SGI® Altix™
Hardware Architecture

Reiner Vogelsang
SGI GmbH
reiner@sgi.com

June 22, 2005
SGI Altix 3000

• Introduced January 2003
 – Red Hat- or Suse-Linux compatible Operating System:
 – 512 CPU SSI Linux released
 – Intel Itanium2 processors (Madison) in all variants
 – Over 55000 processors sold, systems from 2 PEs to >512 PEs
 – Huge shared memory
 • Several orders for < 100 PEs with >2 TB shared memory.
 – Two OS Variants:
 • SGI enhanced Red Hat AS 2.1 based Linux OS
 • Standard SUSE SLES 9
 – Most traditional SGI value-adds available:
 • CXFS Client/Server, DMF, MPT,SCSL
 • Multipipe GFX available
SGI ccNuma Balanced System Architecture
SGI Altix4000

• SGI Altix4000 computer system is characterized by:

 – (Scalable) cache coherent shared memory (SMP)
 – Intel Itanium-2 processors
 – Standard Linux operating system
Parallel Architectures

Shared Memory (S.M.)

- Easy to Program
- Difficult to Scale
- ~ 32p

NUMA

- Easy to Program
- Scales Well
- ~ 1024p

Cluster

- Difficult to Program
- Highly Scalable
- ~ 4096p

Distributed Memory (D.M.)
SGI Scalable ccNUMA Architecture

Interconnect: section of interface chip, cables and routers
ccNuma: Distributed Shared Memory

- ccNuma:
 - Memory is physically distributed but logically shared
 - Memory is kept coherent automatically by hardware
 - Coherent memory: memory is always valid (caches hold copies)
 - Granularity is L3 cacheline (128 B)

- Directory memory:
 - For each cacheline access information is stored:
 - Who has valid copies
 - Which processor has write access
 - Hardware revokes access rights automatically

- In contrast snoopy bus protocols do not scale well
 - Access requests are broadcasted

- Directory information is stored in main memory
 - Directory entry is 4 byte wide for each 128 byte cache line
ccNuma: Distributed Shared Memory

- Schematic view onto a full directory based coherence scheme

- http://www.cse.ucsd.edu/classes/fa00/cse240/lectures/Lecture18.html
SGI Altix 4000
High-Performance SGI® Altix® Servers and Supercomputers

- **Scale up** (processors per node)
 - 100s
 - 10s
 - 2s

- **Scale out** (Total number of processors)
 - 10s
 - 1,000s

- **Single-job, single-user**

- **Processing Capacity**

- **Application Complexity**
 - Mix of applications
 - Unpredictable workloads
 - Growing job size

- **Number of users**
 - 1,000s

- **Number of jobs**
 - 1,000s

- **SGI® Altix® 3000**
 - Supercomputers

- **SGI® Altix® 4000**
 - Servers

- **SGI® Altix® 350**
 - Departmental servers
 - (4–32 CPUs)

- **SGI® Altix® 1350**
 - Clusters
 - Large node clusters

- **SGI® Altix® 1330**

- **SGI® Altix® 330**
 - Low-cost workgroup
 - (1–16 CPUs)

- **SGI® Altix® 3000**
 - Supercomputers

- **SGI® Altix® 4000**
 - Servers

- **SGI® Altix® 330**
 - Low-cost workgroup
 - (1–16 CPUs)

- **SGI® Altix® 4000**
 - Servers

- **SGI® Altix® 330**
 - Low-cost workgroup
 - (1–16 CPUs)

- **SGI® Altix® 4000**
 - Servers

- **SGI® Altix® 330**
 - Low-cost workgroup
 - (1–16 CPUs)

- **SGI® Altix® 4000**
 - Servers

- **SGI® Altix® 330**
 - Low-cost workgroup
 - (1–16 CPUs)

- **SGI® Altix® 4000**
 - Servers
SGI Altix 4700 Processor Blade

Highest Memory BW, Performance: Bandwidth Compute Blade
- 667MHz FSB -> 10.7GB/s Local Memory Bandwidth
- 32 Sockets / S-Rack
- Memory Sizes: 2G – 24GB per blade

Best $/FLOP, Best Density: Density Compute Blade
- 533MHz FSB -> 8.524GB/s Local Memory Bandwidth
- 64 Sockets / S-Rack
- Memory Sizes: 2G – 24GB per blade
SGI® Altix™ 3000BX2 Memory

Each CPU module:

- 4 banks of up to 3 DDR-SDRAM dimms
- Dimms are 512 MB, 1GB or 2GB in size

- PC2100 = 133MHz (DDR226) Altix BW = 8.5 GB/s - 7.5 ns
- PC2700 = 166MHz (DDR333) Altix BW = 10.2 GB/s - 6.0 ns
- PC3200 = 200MHz (DDR400) Altix BW = 12.8 GB/s - 5.0 ns
IRU Blockdiagramm

Router

Blade 1

Blade 3

Blade 5

Blade 7

Blade 9

Blade 2

Blade 4

Blade 6

Blade 8

Blade 10

Upper router board

Lower router board

NUMAlink

NUMAlink

NUMAlink

NUMAlink

NUMAlink

NUMAlink

System control

Power Supply

Power Supply

Power Supply

Power Supply

DC power bus
Numaflex-4 Router:
- Microarchitecture elements of Cray T3E
 - Enhanced hardware support synchronization primitives
- 8 bidirectional ports
- 3.2 GB/s per direction per port
- Low latency about 50 nsec per router
- Dual plane configuration:
 - 2 x 6.4GB/sec total bandwidth between C-bricks
Quad Dense Metarouter

- Four 8-port routers in dense 2U package
SGI Altix 4700 – Blade Concept

Blade

Actuator Assy

Blade (up to 10 per IRU)

Individual Rack Unit

NL Backbone

NL Port To Connect IRUs Together
Standardized Blades, NUMAlink Backbone

Individual Rack Unit (IRU)
(Contains 10 Blades)

Blade

Rack
Small Rack = 4 IRUs
Leadership Performance Density & Versatility

• Configuration Flexibility: Design for Density or Performance
 – 32-sockets per rack
 – 64-sockets per rack
 – 64-cores per rack
 – 128-cores per rack
 – Best Memory BW, Performance (Bandwidth Compute Blade)
Peer I/O: Enabling Increased I/O Flexibility & Performance

- Direct connection of I/O into NUMAlink memory fabric
- Increased I/O link bandwidth $2.4 \rightarrow 6.4 \text{GB/sec}$
- Memory, Compute, I/O are universally accessible
- Total flexibility of compute to I/O ratio
- Allows I/O channel performance to scale concurrently with NUMAlink improvements
Excursion on PCI

- Peripheral Component Interconnect
 - Invented by Intel
 - Started as 32-bit bus
 - Bus is buffered and works asynchronously
 - Supports Plug and Play configuration (PnP)

- PCIX, extension to width of 64 bits, up to 133 Mhz

- Some performance data

<table>
<thead>
<tr>
<th>PCI</th>
<th>PCI-X</th>
</tr>
</thead>
<tbody>
<tr>
<td>33 MHz</td>
<td>66 MHz</td>
</tr>
<tr>
<td>66 MHz</td>
<td>100 MHz</td>
</tr>
<tr>
<td>100 MHz</td>
<td>133 MHz</td>
</tr>
<tr>
<td>132 MB/s</td>
<td>256 MB/s</td>
</tr>
<tr>
<td>512 MB/s</td>
<td>800 MB/s</td>
</tr>
<tr>
<td>800 MB/s</td>
<td>1000 MB/s</td>
</tr>
</tbody>
</table>

- http://arstechnica.com/articles/paedia/hardware/pcie.ars/1
SGI Altix 4700 I/O Blades (PCI-X Based)

Base I/O Blade:
- Minimum of 1 Blade Required for Every SSI, Partition
 - Supports 2 SAS Drives
 - Low Profile PCI-X Slots
 - SAS, GigE, 1394, USB Capable

PCI-X Expansion Blade:
- Optional PCI-X Expansion
 - 3 Full PCI-X Slots, Hot Plug Capable
 - Slot A: 133MHz Bus
 - Slots B, C: 133MHz Each, 100MHz if Both Populated
SGI Altix 4700 Graphics or I/O Expansion (PCI-Express Based)

Front View

PCI-Express I/O & Graphics Expansion Blade:
- Optional PCI-Express Expansion for Graphics, I/O
 - 2 Full PCI-Express Slots
 - 1 PCI-Express Slot Per Channel with 16X PCI-Express Connector
 - Supports up to 90W per card for 2 Graphics Pipes, 150W per card for 1

Front View

PCI-X + PCI-Express I/O & Graphics Expansion Blade:
- Optional PCI-X/PCI-Express Expansion for Graphics, I/O
 - 2 Full PCI-X, 2 Full PCI-Express Slots
 - Slots A, C: 16X PCI-Express
 - Slots B, D: 133MHz Bus Each
 - Supports Max of 150W Graphics Pipes (With B, D Unpopulated)
Next Generation Reconfigurable Compute Technology

<table>
<thead>
<tr>
<th>SGI® RASC™ RC100 Blade</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>FPGA</td>
<td>Xilinx Virtex-4 LX200</td>
</tr>
<tr>
<td>No. of FPGAs</td>
<td>Two per blade</td>
</tr>
</tbody>
</table>
| Host System | SGI® Altix® 4000
SGI® Altix® 3700 Bx2 or 350 *
Silicon Graphics Prism™**+ |
| Memory | 80MB QDR SRAM OR
20GB DDR2 SDRAM |
| I/O | Dual NUMAlink™ 4 ports |
| Max Config | Up to 8 RC100 blades per system
More available with custom config |
| Dimensions | Blade Form Factor
▪ 10-U Altix® 4000 IRU
▪ Up to 8 RC100 blades per IRU
Rack-Mountable Form Factor
▪ 2 blade slot chassis
▪ 3U (5.25" H x 19"W x 26"D) |
| O/S | Linux® OS (on host server) |

* with available 2 blade slot upgrade chassis
+ rack mounted version only

Product plans and information are preliminary and subject to change without notice.
SGI Altix Configurations
Basic System – Single IRU

Each Plane

R1a R2a

G
H
H
G

R1a R2a

R1b R2b

79.5 in. H × 25.8 in. W × 45

6 x 6.4 = 38.4 GB/s = 3.84 GB/s/blade
Single Rack

Hypercube topology within rack

Each plane
128 Compute Blades

28 x 6.4 = 179.2 GB/s = 1.28 GB/s/blade
256 Processor blade system.

Fat-Tree Topology for multiple racks

64 x 6 = 409.6 GB/s = 1.28 GB/s/blade

2 Cables per line
Building Block Beyond 256 Blades

2 cables per line

8 hop maximum
701 ns worst case round-trip latency

400 MB/s/p Bisection 256 SHub Building Block

32x6.4 = 204.8 GB/s = 800 MB/s/shub
2d Matrix Interconnect

- 1024 SHubs: 2 x 2 matrix
- 1536 SHubs: 2 x 3 matrix
- 2048 SHubs: 2 x 4 matrix
- 2560 SHubs: 2 x 5 matrix
- 3072 SHubs: 2 x 6 matrix
- 4096 SHubs: 2 x 8 matrix
MPI Latencies

MPT 1.11.1 Latency
on a 16x128p 1.5 Ghz Altix BX2 (2048p)
(spans multiple cache coherence domains)
from CPU 0 on Host 1

Host1 -> Host5 spans a cache coherency domain

Latency
MPI Bandwidth

MPT 1.11.1 Point-to-Point Bandwidth
on a 16x128p 1.6 Ghz Altix BX2 (2948p)
(spans multiple cache coherence domains)
from CPU 0 on Host

Host1 -> Host5 spans a cache coherence domain (buffered path)

Bandwidth (MB/sec)

Destination CPU
Intel® Itanium® 2 - Why it is important?

- High Bandwidth
 - System Bus: 128 bits wide, 200 MHz/400 MT/sec, 6.4GB/sec
 - Width: 2 bundles per clock
 - 6 integer units
 - 2 loads and 2 stores per clock
 - 11 issue ports
 - 4 FPMultiply Adds per Clock

- Many functional units
 - Core: 1.6 GHz

- Large onchip caches
 - L1: 2x16KB—1 clock latency
 - L2: 256K—5 clock latency
 - L3: 3-9MB—12 clk

- Large physical address space
 - 64-bit virtual addressing
 - Maximum page size of 4GB
 - Addressing: 50-bit physical addressing
 - 32GB/sec bandwidth
Montecito, Intel P9000

Itanium Dual Core: Montecito

<table>
<thead>
<tr>
<th>Montecito Feature Summary</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Simultaneous Threads</td>
<td>4</td>
</tr>
<tr>
<td>Process technology</td>
<td>90nm</td>
</tr>
<tr>
<td>L1 Cache</td>
<td>2 x (D16K + I16K)</td>
</tr>
<tr>
<td>L2 Data</td>
<td>2 x 256K</td>
</tr>
<tr>
<td>L2 Instruction Cache</td>
<td>2 x 1 MB</td>
</tr>
<tr>
<td>L3 Cache (Unified)</td>
<td>2 x 12 MB</td>
</tr>
<tr>
<td>Transistors</td>
<td>1,720,000,000</td>
</tr>
<tr>
<td>Availability Target</td>
<td>2006</td>
</tr>
</tbody>
</table>
Montecito, Intel P9000
Montecito, Intel P9000

Montecito Hyper-/Multi-threading

Serial Execution

Montecito Multi-threaded Execution

Multi-threading decreases stalls and increase performance
Montecito, Intel P9000

Montecito Core Extensions

Slightly extended Itanium® 2 processor core:

- Larger atomic ops: 16-byte ld16/st16/cmp8xchg16
 - Support non-blocking synchronization in database apps
 - Improves performance scalability of database applications on large SMP
- Instruction(s) to support virtualization
- Cash flush extensions (fc and fc.i)
- hint@pause for thread switching
 - Is a NOP on older architecture, will not fault
- Additional integer shifter and popcount
 - Allows scheduling two variable shifts per cycle
 - Enhanced processing performance in cryptographic codes
- Faster chk.a/chk.s resteer
- Support in compiler 9.0 via
 - intrinsics (not documented yet)
 - Introduction of new machine model (KNOBs file for Montecito)
Explicitly Parallel Instruction Computing (EPIC)

- EPIC
 - New instruction set (with IA-32™ compatibility)
 - 3 predicated instructions into 1 bundle (128bit)
 - 2 bundles per cycle
 - 128 general (integer) registers; up to 96 rotating
 - 128 floating-point registers; up to 96 rotating
 - 64 1-bit predicate registers; up to 48 rotating
 - 8 branch registers
 - 128 application registers (e.g., loop or epilog counters for pipelining)
 - Performance Monitor Unit (PMU) (> 100 Performance Counters)
 - Advanced Load Address Table (ALAT)
 - 6 integer units
 - 2 loads and 2 stores per clock cycle, speculative loads
 - 11 issue ports
 - Special instructions (multimedia, popcnt)
IA-64™ Instruction Bundles

1 instruction coded on 41 bits
3 instructions grouped into 1 bundle (128 bits)

Bundle type is specified through 5-bit template:

```plaintext
{   .mfi
    // template (mem-fp-int)
    (p16) ld f39=[r2],16 // load fp, post-increment
    (p19) fnma.d.s0 f49=f42,f6,f45 // multiply Add
    (p16) adds r32=16,r33 }; // integer add immediate

{   .mib
    // template (mem-fp-br)
    (p16) ld f42=[r33] // load fp, post-increment
    (p16) adds r40=8,r33
    br.ctop.dptk.few .BB13_mp_ortho2_ ;; // counted loop branch
```
IA-64™ Branch Optimization

Predication allows to remove (small) branches:

```c
if ( i == j) {
    cmp.eq p1,p2=r32,r33 ;;
    (p1) add r1 = r1, r3
    (p1) fpma.d f31 = f3, f4, f2
    x = y + a * b;
    (p2) sub r1 = 3, r4
    (p2) ldfd f31=[r34], 8
    k += l;
} else {
    k = m - 3;
    y = * p_fp ++ ;
}
```

| cycle 0 | cycle 1 | cycle 1 | cycle 1 | cycle 1 |
IA-64™ HW for Loop Optimization

Counted loops are optimized with HW support:

– Loop counter
– Epilog counter
– Predication registers for each instruction
– Rotation of registers
Itanium™2 - Execution Units

- 6 ALU ALU0-5
- 2 Integer I0,I1
- 1 ISHIFT
- 4 Port Data Cache Unit (2Id[fp]+2st or 4ldf)
- 6 Multimedia PALU0-5
- 2 Parallel shift PSMU0,1
- 1 Parallel Multiply PMUL
- 1 POPCNT
- 2 FP multiply-add FMAC
- 2 FP other operations FMISC
- 3 Branch
Itanium™2 - Instructions Latency

- Integer Instructions 1 cycle
- Floating Point Instructions 4 cycles
- MultiMedia 2 cycles
- FP Multiply-Add/sub \(fma/fnma/fms \) 4 cycles
- FP Multiply or Add \((fma \ x^*y+0 \ or \ x^*1+y) \) 4 cycles
- no FP Div, use approx[256] \(frcpa \) 4 cycles
- no FP RSQRT, use approx[256] \(frsqr \) 4 cycles
- no integer mult, use \(setf/xma/getf \) 6/4/5 cycles
- no integer Mod, Div use \(setf/frcpa/…/getf \) 6/4/5 cycles
Itanium™2 - FP Macros Latency

x/y, 1/sqrt(x), sqrt(x) do not translate into HW instructions. Instead the compiler combines fma/frc/pra (Newton iterations). Similarly integer *, /, %(modulo) are expanded through macros.

Latency will vary depending with compiler efficiency:

<table>
<thead>
<tr>
<th></th>
<th>Single</th>
<th>Double</th>
</tr>
</thead>
<tbody>
<tr>
<td>FP cycles</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>y = a+y</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>y = a*yy</td>
<td>28</td>
<td>32</td>
</tr>
<tr>
<td>y = b+a/y</td>
<td>63</td>
<td>37</td>
</tr>
<tr>
<td>y = a/sqrt(y)</td>
<td>36</td>
<td>55</td>
</tr>
<tr>
<td>y = sqrt(y)</td>
<td>36</td>
<td>37</td>
</tr>
<tr>
<td>y = y/sqrt(y)</td>
<td>43</td>
<td>37</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Single</th>
<th>Double</th>
</tr>
</thead>
<tbody>
<tr>
<td>Int cycles</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>i + ci</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>i = a+bi</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>i = b+a / i</td>
<td>37</td>
<td>56</td>
</tr>
<tr>
<td>i = b + a % i</td>
<td>42</td>
<td>61</td>
</tr>
</tbody>
</table>
Itanium™2 L1/L2 Data Cache

L1D is 16kByte, 64Byte/line, 4way, WriteThrough, GRegisters only:
– 1 cycle latency (2 for load, pointer chasing), no FP cached in L1D
– Store uses 8x8 bytes array. Updates L1D only if hit.
– 8 (unique) outstanding misses

L2U is 256kByte, 128Byte/line, 8way, WriteBack, NotRecentlyUsed
– 5,7,9.../6,8,10... latency for Int/FP
– 16 banks - 16bytes/bank (??? 256Byte stride/alignment ???)
– 16 (unique) outstanding misses
– L2 is not inclusive of L1D and L1I
Itanium™2 L3U Cache/Memory

L3U: 1.5/3MByte, 128Byte/line, 6/12way, WriteBack, LeastRecentlyUsed

- 12,16.../13,17... latency for Int/FP
- 16 (unique) read misses
- 6 write

Local/remote memory is accessed through SHub/NUMAflex:

Local latency 132 ns
Same brick / other node 180 ns
NL4 router ~50 ns
1 Meter cable ~10 ns
SGI Scalable ccNUMA Architecture

8 GB Physical Memory

16 GB Shared Physical Memory

8 GB Physical Memory