The mollicutes
Link to supplementary information

List of references

Apr 09, 2008 by Stülke J., Eilers H., and Schmidl S.

Metabolism and biochemistry / The phosphotransferase system


  • Halbedel, S., Hames, C., and Stülke, J. 2007. Regulation of carbon metabolism in the mollicutes and its relation to virulence. J. Mol. Microbiol. Biotechnol. 12: 147-154.
  • Miles, R. J. 1992. Catabolism in mollicutes. J. Gen. Microbiol. 138: 1773-1783.

    Original work:

  • Cocks, B. G., Brake, F. A., Mitchell, A., and Finch, L. R. 1985. Enzymes of intermediary carbohydrate metabolism in Ureaplasma urealyticum and Mycoplasma mycoides subsp. mycoides. J. Gen. Microbiol. 131: 2129-2135.
  • Constantopoulos, G., and McGarrity, G. J. 1987. Activities of oxidative enzymes in mycoplasmas. J. Bacteriol. 169: 2012-2016.
  • Cordwell, S. J., Basseal, D. J., Pollack, J. D., and Humphery-Smith, I. 1997. Malate/ lactate dehydrogenase in mollicutes: evidence for a multienzyme protein. Gene 195: 113-120.
  • Djordjevic, S. P., Viley, E. M., and Frey, J. 2003. Characterization of a chromosomal region of Mycoplasma sp. bovine group 7 strain PG50 encoding a glycerol transport locus (gtsABC). Microbiology 149: 195-204.
  • Egan, W., Barile, M., and Rottem, S. 1986. 31P-NMR studies of Mycoplasma gallisepticum cells using a continuous perfusion technique. FEBS Lett. 204: 373-376.
  • Khan, L. A., Miles, R. J., and Nicholas, R. A. J. 2005. Hydrogen peroxide production by Mycoplasma bovis and Mycoplasma agalactiae and effect of in vitro passage on a Mycoplasma bovis strain producing high levels of H2O2. Vet. Res. Commun. 29: 181-188.
  • Low, I. E. 1971. Effect of medium on H2O2 levels and peroxidase-like activity by Mycoplasma pneumoniae. Infect. Immun. 3: 80-86.
  • Low, I. E., Eaton, M. D., and Proctor, P. 1968. Relation of catalase to substrate utilization by Mycoplasma pneumoniae. J. Bacteriol. 95: 1425-1430.
  • Low, I. E., and Zimkus, S. M. 1973. Reduced nicotinamide adenine dinucleotide oxidase activity and H2O2 formation of Mycoplasma pneumoniae. J. Bacteriol. 116: 346-354.
  • Lynch, R. E., and Cole, B. C. 1980. Mycoplasma pneumoniae: a prokaryote which consumes oxygen and generates superoxide but which lacks superoxide dismutase. Biochem. Biophys. Res. Comm. 96: 98-105.
  • Manolukas, J. T., Barile, M. F., Chandler, D. K. F., and Pollack, J. D. 1988. Presence of anaplerotic reactions and transamination, and the absence of the tricarboxylic acid cycle in mollicutes. J. Gen. Microbiol. 134: 791-800.
  • McElwain, M. C., and Pollack, J. D. 1987. Synthesis of deoxyribomononucleotides in mollicutes: dependence on deoxyribose-1-phosphate and PPi. J. Bacteriol. 169: 3647-3653.
  • Pollack, J. D., Merola, A. J., Platz, M., and Booth R. L. 1981. Respiration-associated components of Mollicutes. J. Bacteriol. 146: 907-913.
  • Pollack, J. D., Myers, M. A., Dandekar, T., and Herrmann, R. 2002. Suspected utility of enzymes with multiple activities in the small genome Mycoplasma species: The replacement of the missing "household" nucleoside diphosphate kinase gene and activity by glycolytic kinases. OMICS 6: 247-257.

  • Allen, G. S., Steinhauer, K., Hillen, W., et al. 2003. Crystal structure of HPr kinase/ phosphatase from Mycoplasma pneumoniae. J. Mol. Biol. 326: 1203-1217.
  • Halbedel, S., Busse, J., Schmidl, S. R., and Stülke, J. 2006. Regulatory protein phosphorylation in Mycoplasma pneumoniae: A PP2C-type phosphatase serves to dephosphorylate HPr(Ser-P). J. Biol. Chem. 28: 26253-26259.
  • Halbedel, S., and Stülke, J. 2005. Dual phosphorylation of Mycoplasma pneumoniae HPr by Enzyme I and HPr kinase suggests an extended phosphoryl group susceptibility of HPr. FEMS Microbiol. Lett. 247: 193-198.
  • Halbedel, S., Hames, C., and Stülke, J. 2004. In vivo activity of enzymatic and regulatory components of the phosphoenolpyruvate:sugar phosphotransferase system in Mycoplasma pneumoniae. J. Bacteriol. 186: 7936-7943.
  • Hoischen, C., Dijkstra, A., Rottem, S., Reizer, J., and Saier, Jr. M. H. 1993. Presence of protein constituents of the gram-positive bacterial phosphotransferase regulatory system in Acholeplasma laidlawii. J. Bacteriol. 175: 6599-6604.
  • Merzbacher, M., Detsch, C., Hillen, W., and Stülke, J. 2004. Mycoplasma pneumoniae HPr kinase/ phosphorylase. Assigning functional roles to the P-loop and the HPr kinase/ phosphorylase signature sequence motif. Eur. J. Biochem. 271: 367-374.
  • Steinhauer, K., Allen, G. S., Hillen, W., Stülke, J., and Brennan, R. G. 2002. Crystallization, preliminary X-ray analysis and biophysical characterization of HPr kinase/phosphatase of Mycoplasma pneumoniae. Acta Cryst. Sect. D 58: 515-518.
  • Steinhauer, K., Jepp, T., Hillen, W., and Stülke, J. 2002. A novel mode of control of Mycoplasma pneumoniae HPr kinase/phosphatase activity reflects its parasitic life style. Microbiology 148: 3277-3284.
  • Zhu, P.-P., Herzberg, O., and Peterkofsky, A. 1998. Topography of the interaction of HPr(Ser) kinase with HPr. Biochemistry 37: 11762-11770.
  • Zhu, P.-P., Nosworthy, N., Ginsburg, A., et al. 1997. Expression, purification, and characterization of Enzyme IIAglc of the phosphoenolpyruvate:sugar phosphotransferase system of Mycoplasma capricolum. Biochemistry 36: 6947-6953.
  • Zigangirova, N. A., Gershanovich, V. N., Rakovskaya, I. V., et al. 2003. Correlation between activity of the phosphoenol-pyruvate-dependable phosphotransferase system (PTS) and synthesis of adhesion P1 protein in Mycoplasma pneumoniae. Mol. Gen. Mikrobiol. Virusol. 2: 10-13.