The direct-inverse system of Mapudungun: structured probes and direct DP-interaction

Sascha Alexeyenko • University of Göttingen

Objectives

• analytically: a study of **cumulative number agreement**, which is a one-probe-multiple-goals phenomenon that seems to systematically target $2 \rightarrow 1$ but not $1 \rightarrow 2$ configurations (Gluckman, 2015)

- empirically: the direct-inverse system of **Mapudungun** / Mapuche (Araucanian; Chile, Argentina)
- methodologically: a mechanism of direct **featural DP-interaction**,

Challenge

- Cyclic Agree by a low probe, v (Béjar & Rezac, 2009): the relevant probe cannot be v in this case, as it is clearly high in the structure
- Feature Gluttony by a high probe, T (Oxford, 2018; Coon & Keine, 2021): predicts precisely the reverse pattern of #-cumulation in $2 \rightarrow 1$ but not in $1 \rightarrow 2$; hence movement of IA across EA must be assumed

which can also be employed in Dependent Case Theory calculations

Data

The direct-inverse system of Mapudungun schematically:

Intransitive

amu -y -*u* go IND 1DU

'We^{du} go.'

 $(2) \qquad 1 \to 3 \text{ (direct)} \tag{3}$

leli -fi -y -u see DIR IND 1DU

'We^{du} look at him/her/it/them.'

 $3 \rightarrow 1$ (inverse) leli -e -y -u -mew see INV IND 1DU ? 'He/she/it/they look at us^{du}.' \rightarrow **PROPOSAL**: the high probe gets information about the lower argument from the higher argument, i.e. through direct featural DP-interaction

* cumulative number agreement
* object agreement across subject without an intervention effect
* case calculations within the Dependent Case Theory

Analysis

 ● underlying feature geometry (Harley & Ritter, 2002; Béjar, 2003):
 ● articulated probes (Béjar & Rezac, 2009; Oxford, 2018; Coon & Keine, 2021)
 ● two φ-feature structures on DPs: primary and associate
 PROX
 (9)
 DFNT: [VAL] ASSC: [uPRIM ▷]

> relevant verbal projections:
> Fig(it agg)

*-fi can be left out when O is less definite or an overt DP (DOM)

 $(4) \quad 1SG \to 2SG \quad (5) \quad 2SG \to 1SG$

leli -e -y -usee INV IND 1DU 'I look at you^{sg}.'

* -e (no -mew): SAP > 3 > 4 ? * π -agreement with $A_{1\pi}$ * cumulative #-agreement

(6) $1 \to 2 \text{ with } \Sigma > 2$

leli -w -y - $i\tilde{n}$ see ?/REFL IND 1PL

'I look at you^{du/pl}'. 'We^{du/pl} look at you^{sg/du/pl}'.

but also 'We^{pl} look at our-

leli -e $-\emptyset$ -nsee INV IND 1SG 'You^{sg} look at me.'

* also -e and no -mew* π -agr. with $O_{1\pi}$: 1 > 2 > 3 > 4 ? * non-cumulative #-agr. with $O_{1\pi}$

> a. $2DU/PL \rightarrow 1SG$ leli -mu - \emptyset -n see ? IND 1SG b. $2SG/DU/PL \rightarrow 1DU$ leli -mu -y -u see ? IND 1DU c. $2SG/DU/PL \rightarrow 1PL$

- -Fin(iteness)P: mood marker + agreement
- Top(ic)P: encodes givenness (Bax & Diercks, 2012; Mursell, 2018; Mursell & Tan, 2019): $-\phi/-fi/-e$

(10) Top: [uASSC]

5 spell-out rules:

SPKR

2

3

6 If the DP contains two number features (in **PRIM** and **ASSC**), they undergo **sum formation** at spell-out.

(m)ew: cliticized ergative case marker for 3P arguments, i.e. person-sensitive dependent case for EAs

Sample derivation: $1sg \rightarrow 2sg$

leli -mu -y $-i\tilde{n}$ see ? IND 1PL

* maybe: -e tracks transitivity, (6-7) involve some kind of intransitivization * but: both args must be accessible in $1 \rightarrow 2$ with $\Sigma > 2$ for #-cumulation

(7)

