NAG C Library Function Document

nag_legendre_p (s22aac)

1 Purpose

nag_legendre_p (s22aac) returns a sequence of values for either the unnormalized or normalized Legendre functions of the first kind \(P_n^m(x) \) or \(\overline{P}_n^m(x) \) for real \(x \) of a given order \(m \) and degree \(n = 0, 1, \ldots, N \).

2 Specification

```c
void nag_legendre_p (Integer mode, double x, Integer m, Integer nl, double p[],
                 NagError *fail)
```

3 Description

This routine evaluates a sequence of values for either the unnormalized or normalized Legendre \((m = 0)\) or associated Legendre \((m \neq 0)\) functions of the first kind \(P_n^m(x) \) or \(\overline{P}_n^m(x) \), where \(x \) is real with \(-1 \leq x \leq 1\), of order \(m \) and degree \(n = 0, 1, \ldots, N \) defined by

\[
P_n^m(x) = (1 - x^2)^{m/2} \frac{d^m}{dx^m} P_n(x) \text{ if } m \geq 0,
\]

\[
P_n^m(x) = \frac{(n + m)!}{(n - m)!} P_n^m(x) \text{ if } m < 0 \text{ and}
\]

\[
\overline{P}_n^m(x) = \sqrt{\frac{(2n + 1)(n - m)!}{2(n + m)!}} P_n^m(x)
\]

respectively; \(P_n(x) \) is the (unassociated) Legendre polynomial of degree \(n \) given by

\[
P_n(x) \equiv P_n^0(x) = \frac{1}{2^n n!} \frac{d^n}{dx^n}(x^2 - 1)^n
\]

(the Rodrigues formula). Note that some authors (e.g., Abramowitz and Stegun (1972)) include an additional factor of \((-1)^m\) (the Condon-Shortley Phase) in the definitions of \(P_n^m(x) \) and \(\overline{P}_n^m(x) \). They use the notation \(P_m^m(x) \equiv (-1)^m P_n^m(x) \) in order to distinguish between the two cases.

nag_legendre_p is based on a standard recurrence relation given by Abramowitz and Stegun (Abramowitz and Stegun (1972), 8.5.3). Constraints are placed on the values of \(m \) and \(n \) in order to avoid the possibility of machine overflow. It also sets the appropriate elements of the array \(p \) (see Section 4) to zero whenever the required function is not defined for certain values of \(m \) and \(n \) (e.g., \(m = -5 \) and \(n = 3 \)).

4 Parameters

1: \textbf{mode} – Integer \textit{Input}

\textit{On entry:} indicates whether the sequence of function values is to be returned unnormalized or normalized as follows:

- if \textbf{mode} = 1, then the sequence of function values is returned unnormalized;
- if \textbf{mode} = 2, then the sequence of function values is returned normalized.

\textit{Constraint:} \textbf{mode} = 1 or 2.

2: \(x \) – double \textit{Input}

\textit{On entry:} the argument \(x \) of the function.

\textit{Constraint:} abs(\(x \)) \leq 1.0.
3: \(m \) – Integer

\(m \) is the order of the function.

Input

\(\text{Constraint: } \left| m \right| \leq 27. \)

4: \(n \) – Integer

\(n \) is the degree \(N \) of the last function required in the sequence.

Input

\(\text{Constraints:} \)

\(n \geq 0, \)

\(n \leq 100 \text{ when } m = 0, \)

\(n \leq 55 - \left| m \right| \text{ when } m \neq 0. \)

5: \(p[nl+1] \) – double

\(p[nl+1] \) is the required sequence of function values as follows:

- if \(\text{mode} = 1 \), \(p(n) \) contains \(P_n^m(x) \) for \(n = 0, 1, \ldots, N; \)
- if \(\text{mode} = 2 \), \(p(n) \) contains \(P_n^m(x) \) for \(n = 0, 1, \ldots, N. \)

Output

6: \(\text{fail} \) – NagError *

\(\text{fail} \) is the NAG error parameter (see the Essential Introduction).

5 Error Indicators and Warnings

NE_REAL

\(\text{On entry, } x = <value>. \)

\(\text{Constraint: } \left| x \right| \leq 1.0. \)

NE_INT

\(\text{On entry, } \text{mode} = <value>. \)

\(\text{Constraint: } \text{mode} \leq 1 \text{ or } 2. \)

\(\text{On entry, } n = <value>. \)

\(\text{Constraint: } n \geq 0. \)

\(\text{On entry, } m = <value>. \)

\(\text{Constraint: } \left| m \right| \leq 27. \)

NE_INT_2

\(\text{On entry, } n = <value>, m = <value>. \)

\(\text{Constraint: } n \leq 100 \text{ when } m = 0. \)

\(\text{On entry, } n = <value>, m = <value>. \)

\(\text{Constraint: } n \leq 55 - \left| m \right| \text{ when } m \neq 0. \)

6 Further Comments

6.1 Accuracy

The computed function values should be accurate to within a small multiple of the machine precision except when underflow (or overflow) occurs, in which case the true function values are within a small multiple of the underflow (or overflow) threshold of the machine.
6.2 References

7 See Also

None.

8 Example

The following program reads the values of the arguments x, m and N from a file, calculates the sequence of unnormalized associated Legendre function values $P_n^m(x)$, $P_{n+1}^m(x)$, ..., $P_{n+N}^m(x)$, and prints the results.

8.1 Program Text

```c
/* nag_legendre_p (s22aac) Example Program. 
 * Copyright 2000 Numerical Algorithms Group. 
 * NAG C Library 
 * Mark 6, 2000. */

#include <nag.h>
#include <nag_stdlib.h>
#include <nags.h>

int main(void)
{
    const char fmt_99998[] = "%2d %12.4e\n";
    const char fmt_99999[] = "%3d %5.1f%6d%6d\n\n";
    char str[80];
    double p[101];
    double x;
    Integer exit_status=0;
    NagError fail;
    Integer m, mode, n, nl;

    INIT_FAIL(fail);
    Vprintf("s22aac Example Program Results\n\n");

    /* Skip heading in data file */
    Vscanf("%*[\n ]");
    Vscanf("%ld %lf %ld %ld", &mode, &x, &m, &nl);
    if (mode == 1)
    {
        if (m == 0)
        {
            Vstrcpy(str, "Unnormalized Legendre function values\n");
        }
        else
        {
            Vstrcpy(str, "Unnormalized associated Legendre function values\n");
        }
        else if (mode == 2)
        {
```
if (m == 0)
{
 Vstrncpy(str, "Normalized Legendre function values\n");
}
else
{
 Vstrncpy(str, "Normalized associated Legendre function values\n");
}

s22aac (mode, x, m, nl, p, &fail);
Vprintf("mode x m nl\n\n";
Vprintf(fmt_99999, mode, x, m, nl);

if (fail.code == NE_NOERROR)
{
 Vprintf(str);
 Vprintf("\n");
 Vprintf(" n P(n)\n");
 for (n = 0; n <= nl; ++n)
 {
 Vprintf(fmt_99998,n,p[n]);
 }
}
else
{
 Vprintf("Error from s22aac.\n\n", fail.message);
 exit_status = 1;
 goto END;
}
END:
 return exit_status;

8.2 Program Data
s22aac Example Program Data
1 0.5 2 3 : Values of mode, x, m and nl

8.3 Program Results
s22aac Example Program Results

mode x m nl
1 0.5 2 3

Unnormalized associated Legendre function values

n P(n)
0 0.0000e+00
1 0.0000e+00
2 2.2500e+00
3 5.6250e+00