NAG C Library Function Document

nag_bessel_i_nu (s18eec)

1 Purpose

nag_bessel_i_nu (s18eec) returns the value of the modified Bessel function $I_{\nu/4}(x)$ for real $x > 0$.

2 Specification

double nag_bessel_i_nu (double x, Integer nu, NagError *fail)

3 Description

This routine evaluates an approximation to the modified Bessel function of the first kind $I_{\nu/4}(x)$, where the order $\nu = -3, -2, -1, 1, 2$ or 3 and x is real and positive. For positive orders it may also be called with $x = 0$, since $I_{\nu/4}(0) = 0$ when $\nu > 0$. For negative orders the formula

$$I_{-\nu/4}(x) = I_{\nu/4}(x) + \frac{\nu}{2\pi} \sin(\nu x) K_{\nu/4}(x)$$

is used.

4 Parameters

1: x – double

 Input

 On entry: the argument x of the function.

 Constraints:

 $x > 0.0$ when nu < 0,

 $x \geq 0.0$ when nu > 0.

2: nu – Integer

 Input

 On entry: the argument ν of the function.

 Constraint: $1 \leq \text{abs}(\text{nu}) \leq 3$.

3: fail – NagError *

 Input/Output

 The NAG error parameter (see the Essential Introduction).

5 Error Indicators and Warnings

NE_REAL_INT

 On entry, x = <value>, nu = <value>.

 Constraint: $x > 0.0$ when nu < 0.

 On entry, x = <value>, nu = <value>.

 Constraint: $x \geq 0.0$ when nu > 0.

NE_INT

 On entry, nu = <value>.

 Constraint: $1 \leq \text{abs}(\text{nu}) \leq 3$.
NE_OVERFLOWLIKELY
The evaluation has been abandoned due to the likelihood of overflow. The result is returned as zero.

NW_SOME_PRECISION_LOSS
The evaluation has been completed but some precision has been lost.

NE_TOTAL_PRECISION_LOSS
The evaluation has been abandoned due to total loss of precision. The result is returned as zero.

NE_TERMINATION_FAILURE
The evaluation has been abandoned due to failure to satisfy the termination condition. The result is returned as zero.

NE_INTERNAL_ERROR
An internal error has occurred in this function. Check the function call and any array sizes. If the call is correct then please consult NAG for assistance.

6 Further Comments
6.1 Accuracy
All constants in the underlying functions are specified to approximately 18 digits of precision. If \(t \) denotes the number of digits of precision in the floating-point arithmetic being used, then clearly the maximum number of correct digits in the results obtained is limited by \(p = \min(t, 18) \). Because of errors in argument reduction when computing elementary functions inside the underlying functions, the actual number of correct digits is limited, in general, by \(p - s \), where \(s \approx \max(1, |\log_{10} x|) \) represents the number of digits lost due to the argument reduction. Thus the larger the value of \(x \), the less the precision in the result.

6.2 References

7 See Also
None.

8 Example
The example program reads values of the arguments \(x \) and \(\nu \) from a file, evaluates the function and prints the results.

8.1 Program Text
/* nag_bessel_i_nu (s18ec) Example Program. */
* *
* Copyright 2000 Numerical Algorithms Group.
* *
* NAG C Library
* *
* Mark 6, 2000.
*/

#include <stdio.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nags.h>

int main(void)
{
 double x, y;
 Integer exit_status=0;
 NagError fail;
 Integer nu;

 INIT_FAIL(fail);
 Vprintf("s18ec Example Program Results\n\n");

 Vprintf(" x nu y\n");

 /* Skip heading in data file */
 Vscanf("%*[\n"];
 while (scanf("%lf %ld%*[\n", &x, &nu) != EOF)
 {
 y = s18ec(x, nu, &fail);
 if (fail.code == NE_NOERROR)
 Vprintf("%4.1f %6d %12.4e\n", x, nu, y);
 else
 {
 Vprintf("Error from s18ec.\n", fail.message);
 exit_status = 1;
 goto END;
 }
 }
END:
 return exit_status;
} /* main */

8.2 Program Data

s18ec Example Program Data
 3.9 -3
 1.4 -2
 8.2 -1
 6.7 1
 0.5 2
 2.3 3 : Values of x and nu

8.3 Program Results

s18ec Example Program Results

<table>
<thead>
<tr>
<th>x</th>
<th>nu</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.9</td>
<td>-3</td>
<td>9.5207e+00</td>
</tr>
<tr>
<td>1.4</td>
<td>-2</td>
<td>1.4504e+00</td>
</tr>
<tr>
<td>8.2</td>
<td>-1</td>
<td>5.1349e+02</td>
</tr>
<tr>
<td>6.7</td>
<td>1</td>
<td>1.2714e+02</td>
</tr>
<tr>
<td>0.5</td>
<td>2</td>
<td>5.8799e-01</td>
</tr>
<tr>
<td>2.3</td>
<td>3</td>
<td>2.3687e+00</td>
</tr>
</tbody>
</table>