NAG C Library Function Document

nag_bessel_k_nu_scaled (s18edc)

1 Purpose

nag_bessel_k_nu_scaled (s18edc) returns the value of the scaled modified Bessel function $e^x K_{\nu/4}(x)$ for real $x > 0$.

2 Specification

double nag_bessel_k_nu_scaled (double x, Integer nu, NagError *fail)

3 Description

This routine evaluates an approximation to the scaled modified Bessel function of the second kind $e^x K_{\nu/4}(x)$, where the order $\nu = -3, -2, -1, 1, 2$ or 3 and x is real and positive. For negative orders the formula

$$K_{-\nu/4}(x) = K_{\nu/4}(x)$$

is used.

4 Parameters

1: x – double

Input

On entry: the argument x of the function.

Constraint: $x > 0.0$.

2: nu – Integer

Input

On entry: the argument ν of the function.

Constraint: $1 \leq \text{abs(nu)} \leq 3$.

3: fail – NagError *

Input/Output

The NAG error parameter (see the Essential Introduction).

5 Error Indicators and Warnings

NE_REAL

On entry, $x = <value>$.

Constraint: $x > 0.0$.

NE_INT

On entry, $\text{nu} = <value>$.

Constraint: $1 \leq \text{abs(nu)} \leq 3$.

NE_OVERFLOW_LIKELY

The evaluation has been abandoned due to the likelihood of overflow. The result is returned as zero.

NW_SOME_PRECISION_LOSS

The evaluation has been completed but some precision has been lost.
NE_TOTAL_PRECISION_LOSS
The evaluation has been abandoned due to total loss of precision. The result is returned as zero.

NE_TERMINATION_FAILURE
The evaluation has been abandoned due to failure to satisfy the termination condition. The result is returned as zero.

NE_INTERNAL_ERROR
An internal error has occurred in this function. Check the function call and any array sizes. If the call is correct then please consult NAG for assistance.

6 Further Comments
6.1 Accuracy
All constants in the underlying function are specified to approximately 18 digits of precision. If t denotes the number of digits of precision in the floating-point arithmetic being used, then clearly the maximum number of correct digits in the results obtained is limited by $p = \min\{t, 18\}$. Because of errors in argument reduction when computing elementary function inside the underlying function, the actual number of correct digits is limited, in general, by $p - s$, where $s \approx \max\{1, \lceil \log_{10}x \rceil \}$ represents the number of digits lost due to the argument reduction. Thus the larger the value of x, the less the precision in the result.

6.2 References

7 See Also
None.

8 Example
The example program reads values of the arguments x and ν from a file, evaluates the function and prints the results.

8.1 Program Text
/* nag_bessel_k_nu_scaled (s18edc) Example Program. *
 * Copyright 2000 Numerical Algorithms Group.
 * *
 * NAG C Library
 * *
 * Mark 6, 2000.
 */

#include <stdio.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nags.h>

int main(void)
{
 double x;
 double y;
}
Integer exit_status=0;
Integer nu;
NagError fail;

INIT_FAIL(fail);
Vprintf("sl8edc Example Program Results\n\n");
/* Skip heading in data file */
Vscanf("%*[\n"]);
Vprintf("\n x nu y\n\n");
while (scanf("%lf %ld%*[\n"]", x, &nu) != EOF)
{
 y = sl8edc (x, nu, &fail);
 if (fail.code == NE_NOERROR)
 Vprintf("%4.1f %6ld %12.4e\n", x, nu, y);
 else
 {
 Vprintf("Error from sl8edc.\n", fail.message);
 exit_status = 1;
 goto END;
 }
}
END:
return exit_status;
}

8.2 Program Data

sl8edc Example Program Data
3.9 -3
1.4 -2
8.2 -1
6.7 1
0.5 2
2.3 3
: Values of x and nu

8.3 Program Results

sl8edc Example Program Results

\n x nu y
\n3.9 -3 6.5781e-01
1.4 -2 1.0592e+00
8.2 -1 4.3297e-01
6.7 1 4.7791e-01
0.5 2 1.7725e+00
2.3 3 8.7497e-01

[NP3491/6]