NAG C Library Function Document
nag_bessel_i_nu_scaled (s18ecc)

1 Purpose
nag_bessel_i_nu_scaled (s18ecc) returns the value of the scaled modified Bessel function $e^{-x}I_{\nu/4}(x)$ for real $x > 0$.

2 Specification
double nag_bessel_i_nu_scaled (double x, Integer nu, NagError *fail)

3 Description
This routine evaluates an approximation to the scaled modified Bessel function of the first kind $e^{-x}I_{\nu/4}(x)$, where the order $\nu = -3, -2, -1, 1, 2$ or 3 and x is real and positive. For positive orders it may also be called with $x = 0$, since $I_{\nu/4}(0) = 0$ when $\nu > 0$. For negative orders the formula

$$I_{-\nu/4}(x) = I_{\nu/4}(x) + \frac{2}{\pi} \sin\left(\frac{\pi\nu}{4}\right) K_{\nu/4}(x)$$

is used prior to multiplication by the scale factor e^{-x}.

4 Parameters
1: x – double
 Input
 On entry: the argument x of the function.
 Constraints:
 $x > 0.0$ when $\nu < 0$,
 $x \geq 0.0$ when $\nu > 0$.

2: nu – Integer
 Input
 On entry: the argument ν of the function.
 Constraint: $1 \leq \text{abs(nu)} \leq 3$.

3: fail – NagError *
 Input/Output
 The NAG error parameter (see the Essential Introduction).

5 Error Indicators and Warnings
NE_REAL_INT
 On entry, $x = \langle\text{value}\rangle$, $\nu = \langle\text{value}\rangle$.
 Constraint: $x > 0.0$ when $\nu < 0$.
 On entry, $x = \langle\text{value}\rangle$, $\nu = \langle\text{value}\rangle$.
 Constraint: $x \geq 0.0$ when $\nu > 0$.

NE_INT
 On entry, $\nu = \langle\text{value}\rangle$.
 Constraint: $1 \leq \text{abs(nu)} \leq 3$.

[NP3491/6] s18ecc.1
NE_OVERFLOWLIKELY

The evaluation has been abandoned due to the likelihood of overflow. The result is returned as zero.

NW_SOME_PRECISION_LOSS

The evaluation has been completed but some precision has been lost.

NE_Total_Precision_Loss

The evaluation has been abandoned due to total loss of precision. The result is returned as zero.

NE_TERMINATION_FAILURE

The evaluation has been abandoned due to failure to satisfy the termination condition. The result is returned as zero.

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the call is correct then please consult NAG for assistance.

6 Further Comments

6.1 Accuracy

All constants in the underlying functions are specified to approximately 18 digits of precision. If \(t \) denotes the number of digits of precision in the floating-point arithmetic being used, then clearly the maximum number of correct digits in the results obtained is limited by \(p = \min(t, 18) \). Because of errors in argument reduction when computing elementary functions inside the underlying functions, the actual number of correct digits is limited, in general, by \(p - s \), where \(s \approx \max(1, |\log_{10} x|) \) represents the number of digits lost due to the argument reduction. Thus the larger the value of \(x \), the less the precision in the result.

6.2 References

7 See Also

None.

8 Example

The example program reads values of the arguments \(x \) and \(\nu \) from a file, evaluates the function and prints the results.

8.1 Program Text

/* nag_bessel_i_nu_scaled (s18ecc) Example Program.
 *
 * Copyright 2000 Numerical Algorithms Group.
 *
 * NAG C Library
 *
 * Mark 6, 2000.
 */

#include <nag.h>
#include <nag_stdbib.h>
#include <nags.h>

int main(void)
{
 double x;
 double y;
 Integer exit_status=0;
 Integer nu;
 NagError fail;

 INIT_FAIL(fail);
 Vprintf("s18ecc Example Program Results\n\n");
 /* Skip heading in data file */
 Vscanf("%*[\n]");
 Vprintf("\n x nu y\n\n");
 while (scanf("%lf %ld%*[\n]", &x, &nu) != EOF)
 {
 y = s18ecc (x, nu, &fail);
 if (fail.code == NE_NOERROR)
 Vprintf("%12.4f %6ld %12.4e\n", x, nu, y);
 else
 {
 Vprintf("Error from s18ecc.\n\n", fail.message);
 exit_status = 1;
 goto END;
 }
 }
 END:
 return exit_status;
}

8.2 Program Data

s18ecc Example Program Data
3.9 -3
1.4 -2
8.2 -1
6.7 1
0.5 2
2.3 3 : Values of x and nu

8.3 Program Results

s18ecc Example Program Results

<table>
<thead>
<tr>
<th>x</th>
<th>nu</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.9</td>
<td>-3</td>
<td>1.9272e-01</td>
</tr>
<tr>
<td>1.4</td>
<td>-2</td>
<td>3.5767e-01</td>
</tr>
<tr>
<td>8.2</td>
<td>-1</td>
<td>1.4103e-01</td>
</tr>
<tr>
<td>6.7</td>
<td>1</td>
<td>1.5649e-01</td>
</tr>
<tr>
<td>0.5</td>
<td>2</td>
<td>3.5664e-01</td>
</tr>
<tr>
<td>2.3</td>
<td>3</td>
<td>2.3748e-01</td>
</tr>
</tbody>
</table>