NAG C Library Function Document

nag_complex_erfc (s15ddc)

1 Purpose

nag_complex_erfc (s15ddc) computes values of the function \(w(z) = e^{-z^2} \text{erfc}(-iz) \), for complex \(z \).

2 Specification

Complex nag_complex_erfc (Complex \(z \), NagError *\(\text{fail} \))

3 Description

nag_complex_erfc (s15ddc) computes values of the function \(w(z) = e^{-z^2} \text{erfc}(-iz) \), where \(\text{erfc} z \) is the complementary error function

\[
\text{erfc} z = \frac{2}{\sqrt{\pi}} \int_{z}^{\infty} e^{-t^2} dt,
\]

for complex \(z \). The method used is that in Gautschi (1970) for \(z \) in the first quadrant of the complex plane, and is extended for \(z \) in other quadrants via the relations \(w(-z) = 2e^{-z^2} - w(z) \) and \(w(\overline{z}) = \overline{w(-z)} \). Following advice in Gautschi (1970), and van der Laan and Temme (1984), the code in Gautschi (1969) has been adapted to work in various precisions up to 18 decimal places. The real part of \(w(z) \) is sometimes known as the Voigt function.

4 References

Gautschi W (1969) Algorithm 363: Complex error function Comm. ACM 12 635
van der Laan C G and Temme N M (1984) Calculation of special functions: the gamma function, the exponential integrals and error-like functions CWI Tract 10 Centre for Mathematics and Computer Science, Amsterdam

5 Parameters

1: \(z \) – Complex \(\text{Input} \)
 On entry: the argument \(z \) of the function.

2: \(\text{fail} \) – NagError * \(\text{Input/Output} \)
 The NAG error parameter (see the Essential Introduction).

6 Error Indicators and Warnings

NE_RESULT_HALF_PRECISION
 Result has less than half precision when entered with argument \(z = (\langle value \rangle, \langle value \rangle) \).

NE_RESULT_IMAGINARY_OVERFLOW
 Imaginary part of result overflows when entered with argument \(z = (\langle value \rangle, \langle value \rangle) \).

NE_RESULT_NO_PRECISION
 Result has no precision when entered with argument \(z = (\langle value \rangle, \langle value \rangle) \).

[NP3645/7] s15ddc.1
Both real and imaginary parts of result overflow when entered with argument \(z = (\langle \text{value} \rangle, \langle \text{value} \rangle) \).

Real part of result overflows when entered with argument \(z = (\langle \text{value} \rangle, \langle \text{value} \rangle) \).

On entry, parameter \(\langle \text{value} \rangle \) had an illegal value.

An internal error has occurred in this function. Check the function call and any array sizes. If the call is correct then please consult NAG for assistance.

The accuracy of the returned result depends on the argument \(z \). If \(z \) lies in the first or second quadrant of the complex plane (i.e., \(\text{Im} z \) is greater than or equal to zero), the result should be accurate almost to machine precision, except that there is a limit of about 18 decimal places on the achievable accuracy because constants in the function are given to this precision. With such arguments, \texttt{fail} can only return as zero.

If however \(\text{Im} z \) is less than zero, accuracy may be lost in two ways; firstly, in the evaluation of \(e^{-z^2} \), if \(\text{Im}(-z^2) \) is large, in which case a warning will be issued through \texttt{fail.code} = \texttt{NE_RESULT_HALF_PRECISION} or \texttt{NE_RESULT_NO_PRECISION}; and secondly, near the zeros of the required function, where precision is lost due to cancellation, in which case no warning is given — the result has absolute accuracy rather than relative accuracy. Note also that in this half-plane, one or both parts of the result may overflow — this is signalled through \texttt{fail.code} = \texttt{NE_RESULT_REAL_OVERFLOW}, \texttt{NE_RESULT_IMAGINARY_OVERFLOW} or \texttt{NE_RESULT_OVERFLOW}.

The time taken for a call of \texttt{nag_complex_erfc (s15ddc)} depends on the argument \(z \), the time increasing as \(|z| \rightarrow 0.0 \).

\texttt{nag_complex_erfc (s15ddc)} may be used to compute values of \(\text{erfc} z \) and \(\text{erf} z \) for complex \(z \) by the relations \(\text{erfc} z = e^{-z^2} w(i z) \), \(\text{erf} z = 1 - \text{erfc} z \). (For real arguments, \texttt{nag_erfc (s15adc)} and \texttt{nag_erf (s15aec)} should be used.)

The example program reads values of the argument \(z \) from a file, evaluates the function at each value of \(z \) and prints the results.

/* \texttt{nag_complex_erfc (s15ddc)} Example Program */
/* * Copyright 2002 Numerical Algorithms Group. */
/* * Mark 7, 2002. */
#include <nag.h>
#include <stdio.h>
#include <nag_stdlib.h>
#include <nags.h>
int main(void)
{
 Complex w, z;

 Integer exit_status = EXIT_SUCCESS;
 NagError fail;

 INIT_FAIL(fail);

 /* Skip heading in data file */
 Vscanf("%*[\n]");
 Vprintf("s15ddc Example Program Results\n");
 Vprintf(" z w\n");
 while (scanf(" (%lf,%lf)%*[\n] ", &z.re, &z.im) != EOF)
 {
 w = s15ddc(z, &fail);
 if (fail.code == NE_NOERROR)
 Vprintf("(%8.4f,%8.4f) (%8.4f,%8.4f)\n", z.re, z.im, w.re, w.im);
 else
 Vprintf("Error from s15ddc.\n%s\n", fail.message);
 exit_status = 1;
 goto END;
 }
}

END:
 return exit_status;
}

9.2 Program Data

s15ddc Example Program Data
(1.00, 0.00)
(-3.01, 0.75)
(2.75, -1.52)
(-1.33, -0.54) - Values for z.

9.3 Program Results

s15ddc Example Program Results

\begin{array}{llll}
 z & w \\
 (1.0000, 0.0000) & (0.3679, 0.6072) \\
 (-3.0100, 0.7500) & (0.0522, -0.1838) \\
 (2.7500, -1.5200) & (-0.1015, 0.1654) \\
 (-1.3300, -0.5400) & (-0.1839, -0.7891) \\
\end{array}