NAG C Library Function Document

nag_polygamma_deriv (s14adc)

1 Purpose

nag_polygamma_deriv (s14adc) returns a sequence of values of scaled derivatives of the psi function $\psi(x)$.

2 Specification

void nag_polygamma_deriv (double x, Integer n, Integer m, double ans[], NagError *fail)

3 Description

nag_polygamma_deriv (s14adc) computes m values of the function

$$w(k, x) = \frac{(-1)^{k+1} \psi^{(k)}(x)}{k!},$$

for $x > 0$, $k = n, n + 1, \ldots, n + m - 1$, where ψ is the psi function

$$\psi(x) = \frac{d}{dx} \ln \Gamma(x) = \frac{\Gamma'(x)}{\Gamma(x)},$$

and $\psi^{(k)}$ denotes the kth derivative of ψ.

The function is derived from the routine PSIFN in Amos (1983). The basic method of evaluation of $w(k, x)$ is the asymptotic series

$$w(k, x) \sim \epsilon(k, x) + \frac{1}{2x^{k+1}} + \frac{1}{x} \sum_{j=1}^{\infty} \frac{B_{2j}}{(2j)!} \frac{(2j + k - 1)!}{k!} x^{-2j},$$

for large x greater than a machine-dependent value x_{min}, followed by backward recurrence using

$$w(k, x) = w(k, x + 1) + x^{-k-1}$$

for smaller values of x, where $\epsilon(k, x) = -\ln x$ when $k = 0$, $\epsilon(k, x) = \frac{1}{kx^k}$ when $k > 0$, and B_{2j}, $j = 1, 2, \ldots$, are the Bernoulli numbers.

When k is large, the above procedure may be inefficient, and the expansion

$$w(k, x) = \sum_{j=1}^{\infty} \frac{1}{(x + j)^{k+1}},$$

which converges rapidly for large k, is used instead.

4 References

5 Parameters

1: \(x \) – double \hspace{1cm} Input
 On entry: the argument \(x \) of the function.
 Constraint: \(x > 0.0 \).

2: \(n \) – Integer \hspace{1cm} Input
 On entry: the index of the first member \(n \) of the sequence of functions.
 Constraint: \(n \geq 0 \).

3: \(m \) – Integer \hspace{1cm} Input
 On entry: the number of members \(m \) required in the sequence \(w(k, x) \), for \(k = n, n + 1, \ldots, n + m - 1 \).
 Constraint: \(m \geq 1 \).

4: \(\text{ans}[m] \) – double \hspace{1cm} Output
 On exit: the first \(m \) elements of \(\text{ans} \) contain the required values \(w(k, x) \), for \(k = n, n + 1, \ldots, n + m - 1 \).

5: \(\text{fail} \) – NagError * \hspace{1cm} Input/Output
 The NAG error parameter (see the Essential Introduction).

6 Error Indicators and Warnings

NE_INT
 On entry, \(m = \langle \text{value} \rangle \).
 Constraint: \(m \geq 1 \).
 On entry, \(n = \langle \text{value} \rangle \).
 Constraint: \(n \geq 0 \).

NE_INTERNAL_WORKSPACE
 There is not enough internal workspace to continue computation. \(m \) is probably too large.

NE_OVERFLOW_LIKEILY
 Computation abandoned due to the likelihood of overflow.

NE_REAL
 On entry, \(x = \langle \text{value} \rangle \).
 Constraint: \(x > 0.0 \).

NE_UNDERFLOW_LIKEILY
 Computation abandoned due to the likelihood of underflow.

NE_BAD_PARAM
 On entry, parameter \(\langle \text{value} \rangle \) had an illegal value.

NE_INTERNAL_ERROR
 An internal error has occurred in this function. Check the function call and any array sizes. If the call is correct then please consult NAG for assistance.
7 Accuracy

All constants in nag_polygamma_deriv (s14adc) are given to approximately 18 digits of precision. Calling the number of digits of precision in the floating-point arithmetic being used \(t \), then clearly the maximum number of correct digits in the results obtained is limited by \(p = \min(t, 18) \). Empirical tests of nag_polygamma_deriv (s14adc), taking values of \(x \) in the range \(0.0 < x < 50.0 \), and \(n \) in the range \(1 \leq n \leq 50 \), have shown that the maximum relative error is a loss of approximately two decimal places of precision. Tests with \(n = 0 \), i.e., testing the function \(-\psi(x) \), have shown somewhat better accuracy, except at points close to the zero of \(\psi(x) \), \(x \approx 1.461632 \), where only absolute accuracy can be obtained.

8 Further Comments

The time taken for a call of nag_polygamma_deriv (s14adc) is approximately proportional to \(m \), plus a constant. In general, it is much cheaper to call nag_polygamma_deriv (s14adc) with \(m \) greater than 1 to evaluate the function \(w(k,x) \), for \(k = n, n+1, \ldots, n+m-1 \), rather than to make \(m \) separate calls of nag_polygamma_deriv (s14adc).

9 Example

The example program reads values of the argument \(x \) from a file, evaluates the function at each value of \(x \) and prints the results.

9.1 Program Text

/* nag_polygamma_deriv (s14adc) Example Program
 * Copyright 2002 Numerical Algorithms Group.
 * Mark 7, 2002.
 */
#include <nag.h>
#include <stdio.h>
#include <nag_stdlib.h>
#include <nags.h>

int main(void)
{
 double x, w[4];
 int n, m;

 /* Skip heading in data file */
 Vscanf("%*[\n]");
 Vprintf("s14adc Example Program Results\n");
 Vprintf(" x w(0,x) w(1,x) w(2,x) w(3,x)\n");
 while (scanf("%lf", \&x) \! = EOF)
 {
 n = 0;
 m = 4;
 s14adc(x, n, m, w, NAGERR_DEFAULT);
 Vprintf("%12.4e %12.4e %12.4e %12.4e\n", x, w[0], w[1], w[2], w[3]);
 }
 return EXIT_SUCCESS;
}

9.2 Program Data

s14adc Example Program Data
0.1
0.5
3.6
8.0
9.3 Program Results

<table>
<thead>
<tr>
<th>x</th>
<th>(w(0,x))</th>
<th>(w(1,x))</th>
<th>(w(2,x))</th>
<th>(w(3,x))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0000e-01</td>
<td>1.0424e+01</td>
<td>1.0143e+02</td>
<td>1.0009e+03</td>
<td>1.0001e+04</td>
</tr>
<tr>
<td>5.0000e-01</td>
<td>1.9635e+00</td>
<td>4.9348e+00</td>
<td>8.4144e+00</td>
<td>1.6235e+01</td>
</tr>
<tr>
<td>3.6000e+00</td>
<td>-1.1357e+00</td>
<td>3.1988e-01</td>
<td>8.0750e-02</td>
<td>1.0653e-02</td>
</tr>
<tr>
<td>8.0000e+00</td>
<td>-2.0156e+00</td>
<td>1.3314e-01</td>
<td>8.8498e-03</td>
<td>7.8321e-04</td>
</tr>
</tbody>
</table>