NAG C Library Function Document

nag_estimate_agarchII (g13fcc)

1 Purpose

nag_estimate_agarchII (g13fcc) estimates the parameters of a univariate regression-type II AGARCH\((p,q)\) process.

2 Specification

```c
#include <nag.h>
#include <nagl3.h>

void nag_estimate_agarchII (const double yt[], const double x[], Integer tdx,
   Integer num, Integer p, Integer q, Integer nreg, Integer mn,
   double theta[], double se[], double sc[], double covar[],
   Integer tdc, double *hp, double et[], double ht[], double *lgf,
   Nag_Garch_Stationary_Type stat_opt,
   Nag_Garch_Est_Type est_opt, Integer max_iter, double tol,
   NagError *fail)
```

3 Description

A univariate regression-type II AGARCH\((p,q)\) process, with \(p\) coefficients \(\alpha_i, i = 1, \ldots, p\), \(q\) coefficients, \(\beta_i, i = 1, \ldots, q\), mean \(b_0\), and \(k\) linear regression coefficients \(b_i, i = 1, \ldots, k\), can be represented by:

\[
y_t = b_0 + x_t^T b + \epsilon_t
\]

\[
\epsilon_t | \psi_{t-1} \sim N(0, h_t)
\]

\[
h_t = \alpha_0 + \sum_{i=1}^{q} \alpha_i (|\epsilon_{t-i}| + \gamma \epsilon_{t-i})^2 + \sum_{i=1}^{p} \beta_i h_{t-i}, \quad t = 1, \ldots, T.
\]

Here \(T\) is the number of terms in the sequence, \(y_t\) denotes the endogenous variables, \(x_t\) the exogenous variables, \(b_0\) the mean, \(b\) the regression coefficients, \(\epsilon_t\) the residuals, \(\gamma\) is the asymmetry parameter, \(h_t\) is the conditional variance, and \(\psi_t\) the information set of all information up to time \(t\).

The routine nag_estimate_agarchII provides an estimate for \(\hat{\theta}\), the \((p + q + k + 3) \times 1\) parameter vector \(\theta = (b_0, b^T, \omega^T)\) where \(\omega^T = (\alpha_0, \alpha_1, \ldots, \alpha_q, \beta_1, \ldots, \beta_p, \gamma)\) and \(b^T = (b_1, \ldots, b_k)\).

\(mn\), \(nreg\) (see Section 4) can be used to simplify the GARCH\((p,q)\) expression in equation (1) as follows:

No Regression or Mean

\[y_t = \epsilon_t,\]

\[mn = 0,\]

\[nreg = 0,\] and

\(\theta\) is a \((p + q + 2) \times 1\) vector.

No Regression

\[y_t = b_0 + \epsilon_t,\]

\[mn = 1,\]

\[nreg = 0,\] and

\(\theta\) is a \((p + q + 3) \times 1\) vector.
Note: if the \(y_t = \mu + \epsilon_t \), where \(\mu \) is known (not to be estimated by nag_estimate_agarchII) then equation (1) can be written as \(y_t^u = \epsilon_t \), where \(y_t^u = y_t - \mu \). This corresponds to the case No Regression or Mean, with \(y_t \) replaced by \(y_t - \mu \).

No Mean

\[
y_t = x_t^T b + \epsilon_t,
\]
\[
nn = 0,
\]
\[
nreg = k \text{ and}
\]
\(\theta \) is a \((p + q + k + 2) \times 1\) vector.

4 Parameters

Note: for convenience \texttt{npar} will be used here to denote the expression \(2 + q + p + \texttt{nn} + \texttt{nreg} \) representing the number of model parameters.

1: \texttt{yt[num]} – const double \hspace{1cm} \textit{Input}

On entry: the sequence of observations, \(y_t, t = 1, \ldots, T \).

2: \texttt{x[num][tdx]} – const double \hspace{1cm} \textit{Input}

On entry: row \(t \) of \(x \) contains the time dependent exogenous vector \(x_t \), where \(x_t^T = (x_t^1, \ldots, x_t^k) \), for \(t = 1, \ldots, T \).

3: \texttt{tdx} – Integer \hspace{1cm} \textit{Input}

On entry: the second dimension of the array \(x \) as declared in the function from which nag_estimate_agarchII is called.

\textit{Constraint:} \(\texttt{tdx} \geq \texttt{nreg} \).

4: \texttt{num} – Integer \hspace{1cm} \textit{Input}

On entry: the number of terms in the sequence, \(T \).

\textit{Constraint:} \(\texttt{num} \geq \texttt{npar} \).

5: \texttt{p} – Integer \hspace{1cm} \textit{Input}

On entry: the GARCH\((p, q)\) parameter \(p \).

\textit{Constraint:} \(p \geq 0 \).

6: \texttt{q} – Integer \hspace{1cm} \textit{Input}

On entry: the GARCH\((p, q)\) parameter \(q \).

\textit{Constraint:} \(q \geq 1 \).

7: \texttt{nreg} – Integer \hspace{1cm} \textit{Input}

On entry: the number of regression coefficients, \(k \).

\textit{Constraint:} \(nreg \geq 0 \).

8: \texttt{nn} – Integer \hspace{1cm} \textit{Input}

On entry: if \(\texttt{nn} = 1 \) then the mean term \(b_0 \) will be included in the model.

\textit{Constraint:} \(\texttt{nn} = 0 \) or \(\texttt{nn} = 1 \).
theta[npar] – double

On entry: the initial parameter estimates for the vector \(\theta \). The first element contains the coefficient \(\alpha_0 \), the next \(q \) elements contain the coefficients \(\alpha_i, i = 1, \ldots, q \). The next \(p \) elements are the coefficients \(\beta_j, j = 1, \ldots, p \). The next element contains the asymmetry parameter \(\gamma \). If \(\text{est}_\text{opt} = \text{Nag_Garch_Est_Initial_False} \) then (when \(\text{mn} = 1 \)) the next term contains an initial estimate of the mean term \(b_0 \), and the remaining \(\text{nreg} \) elements are taken as initial estimates of the linear regression coefficients \(b_i, i = 1, \ldots, k \).

On exit: the estimated values \(\hat{\theta} \) for the vector \(\theta \). The first element contains the coefficient \(\alpha_0 \), the next \(q \) elements contain the coefficients \(\alpha_i, i = 1, \ldots, q \). The next \(p \) elements are the coefficients \(\beta_j, j = 1, \ldots, p \). The next element contains the estimate for the asymmetry parameter \(\gamma \). If \(\text{mn} = 1 \) then the next element contains an estimate for the mean term \(b_0 \). The final \(\text{nreg} \) elements are the estimated linear regression coefficients \(b_i, i = 1, \ldots, k \).

se[npar] – double

On entry: the standard errors for \(\hat{\theta} \). The first element contains the standard error for \(\alpha_0 \), the next \(q \) elements contain the standard errors for \(\alpha_i, i = 1, \ldots, q \), the next \(p \) elements are the standard errors for \(\beta_j, j = 1, \ldots, p \). The next element contains the standard error for \(\gamma \). If \(\text{mn} = 1 \) then the next element contains the standard error for \(b_0 \). The final \(\text{nreg} \) elements are the standard errors for \(b_j, j = 1, \ldots, k \).

sc[npar] – double

On entry: the scores for \(\hat{\theta} \). The first element contains the score for \(\alpha_0 \), the next \(q \) elements contain the score for \(\alpha_i, i = 1, \ldots, q \), the next \(p \) elements are the scores for \(\beta_j, j = 1, \ldots, p \). The next element contains the score for \(\gamma \). If \(\text{mn} = 1 \) then the next element contains the score for \(b_0 \). The final \(\text{nreg} \) elements are the scores for \(b_j, j = 1, \ldots, k \).

covar[npar][tdc] – double

On entry: the covariance matrix of the parameter estimates \(\hat{\theta} \), that is the inverse of the Fisher Information Matrix.

tdc – Integer

On entry: the second dimension of the array covar as declared in the function from which nag_estimate_agarchI is called.

Constraint: \(tdc \geq \text{npar} \).

hp – double *

On entry: If \(\text{est}_\text{opt} = \text{Nag_Garch_Est_Initial_False} \) then \(\text{hp} \) is the value to be used for the pre-observed conditional variance. If \(\text{est}_\text{opt} = \text{Nag_Garch_Est_Initial_True} \) then \(\text{hp} \) is not referenced.

On exit: If \(\text{est}_\text{opt} = \text{Nag_Garch_Est_Initial_True} \) then \(\text{hp} \) is the estimated value of the pre-observed conditional variance.

et[num] – double

On exit: the estimated residuals, \(\epsilon_t, t = 1, \ldots, T \).

ht[num] – double

On exit: the estimated conditional variances, \(h_t, t = 1, \ldots, T \).

lgl – double *

On exit: the value of the log likelihood function at \(\hat{\theta} \).
\textbf{5 Error Indicators and Warnings}

\textbf{NE_BAD_PARAM}

On entry, parameter \texttt{stat_opt} had an illegal value.
On entry, parameter \texttt{est_opt} had an illegal value.

\textbf{NE_INT_ARG_LT}

On entry, \texttt{nreg} must not be less than 0: \texttt{nreg = <value>},
On entry, \texttt{q} must not be less than 1: \texttt{q = <value>},
On entry, \texttt{p} must not be less than 0: \texttt{p = <value>},
On entry, \texttt{max_iter} must not be less than 0: \texttt{max_iter = <value>}.

\textbf{NE_2_INT_ARG_LT}

On entry, \texttt{tdx = <value>} while \texttt{nreg = <value>},
These parameters must satisfy \texttt{tdx \geq nreg}.
On entry, \texttt{tdc = <value>} while \texttt{2+q+p+mn+nreg = <value>},
These parameters must satisfy \texttt{tdc \geq 2+q+p+mn+nreg}.
On entry, \texttt{num = <value>} while \texttt{2+q+p+mn+nreg = <value>},
These parameters must satisfy \texttt{num \geq 2+q+p+mn+nreg}.

\textbf{NE_INVALID_INT_RANGE_2}

Value \texttt{<value>} given to \texttt{mn} is not valid. Correct range is 0 to 1.

\textbf{NE_MAT_NOT_FULL_RANK}

Matrix \(X \) does not give a model of full rank.
NE_MAT_NOT_POS_DEF

Attempt to invert the second derivative matrix needed in the calculation of the covariance matrix of the parameter estimates has failed. The matrix is not positive-definite, possibly due to rounding errors.

NE_ALLOC_FAIL

Memory allocation failed.

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the call is correct then please consult NAG for assistance.

6 Further Comments

6.1 Accuracy

Not applicable.

6.2 References

7 See Also

None.

8 Example

This example program illustrates the use of nag_estimate_agarchII to model a GARCH(1,1) sequence generated by nag_generate_agarchII (g05hce), a three step forecast is then calculated using nag_forecast_agarchII (g13fde).

8.1 Program Text

/* nag_estimate_agarchII (g13fcc) Example Program.
 *
 * Copyright 2000 Numerical Algorithms Group.
 *
 * NAG C Library
 *
 * Mark 6, 2000.
 *
 */

#include <nag.h>
#include <nag_stdlib.h>
#include <stdio.h>
#include <ctype.h>
#include <math.h>
#include <nag05.h>
```c
#include <nagl3.h>

int main(void)
{
    double *bx=0, *covar=0, *et=0, fac1, gamma, hp;
    double *ht=0, lgf, mean, *param=0, *rvec=0;
    double *sc=0, *se=0, *theta=0, *cvar=0,tol;
    double *x=0, xterm, *yt=0;
    Integer exit_status = 0;
    Integer i, nt, ip, iq, j, k;
    Integer tdx, tdc;
    Integer maxit, mn, npar, nreg, seed, num, num_startup;
    Nag_Garch_Fcall_Type fcall;
    Nag_Garch_Stationary_Type stat_opt;
    Nag_Garch_Est_Initial_Type est_opt;
    NagError fail;

    INIT_FAIL(fail);
    mn = 1;
    nreg = 2;
    gamma = -0.4;
    ip = 1;
    iq = 1;
    num = 1000;
    nt = 3;
    npar = iq + ip + 1;

    tdc = npar+mn+nreg+1;
    tdx = nreg;

#define YT(I) yt[(I)-1]
#define THETA(I) theta[(I)-1]
#define SE(I) se[(I)-1]
#define SC(I) sc[(I)-1]
#define RVEC(I) rvec[(I)-1]
#define PARAM(I) param[(I)-1]
#define HT(I) ht[(I)-1]
#define ET(I) et[(I)-1]
#define BX(I) bx[(I)-1]
#define CVAR(I) cvar[(I)-1]
#define X(I,J) x[((I)-1)*tdx + ((J)-1)]
#define COVAR(I,J) covar[((I)-1)*tdx + ((J)-1)]

    Vprintf ("gl3fcc Example Program Results\n\n");
    if (!(!bx = NAG_ALLOC (nreg, double))
        || !(!covar = NAG_ALLOC ((npar+mn+nreg+1) * (npar+mn+nreg+1), double))
        || !(!et = NAG_ALLOC (num, double))
        || !(!ht = NAG_ALLOC (num, double))
        || !(!param = NAG_ALLOC (npar+mn+nreg+1, double))
        || !(!rvec = NAG_ALLOC (40, double))
        || !(!sc = NAG_ALLOC (npar+mn+nreg+1, double))
        || !(!se = NAG_ALLOC (npar+mn+nreg+1, double))
        || !(!theta = NAG_ALLOC (npar+mn+nreg+1, double))
        || !(!x = NAG_ALLOC (num * nreg, double))
        || !(!cvar = NAG_ALLOC (nt, double))
        || !(!yt = NAG_ALLOC (num, double)))
```
{
 Vprintf("Allocation failure\n");
 exit_status = -1;
 goto END;
}

seed = 11;
BX (1) = 1.5;
BX (2) = 2.5;
mean = 3.0;

for (i = 1; i <= num; ++i)
{
 fac1 = (double) i * .01;
 X (i, 1) = sin (fac1) * 0.7 + 0.01;
 X (i, 2) = fac1 * 0.1 + 0.5;
}

PARAM (1) = 0.2;
PARAM (2) = 0.2;
PARAM (3) = 0.7;

fcall = Nag_Garch_Fcall_True;
go5cbc(seed);
num_startup = 300;
go5hlc (num_startup, ip, iq, &PARAM (1), gamma, &HT (1), &YT (1),
 fcall, &RVEC (1), &fail);
if (fail.code != NE_NOERROR)
{
 Vprintf("Error from go5hlc.\n%s\n", fail.message);
 exit_status = 1;
 goto END;
}

fcall = Nag_Garch_Fcall_False;
go5hlc (num, ip, iq, &PARAM (1), gamma, &HT (1), &YT (1),
 fcall, &RVEC (1), &fail);
if (fail.code != NE_NOERROR)
{
 Vprintf("Error from go5hlc.\n%s\n", fail.message);
 exit_status = 1;
 goto END;
}

for (i = 1; i <= num; ++i)
{
 xterm = 0.0;
 for (k = 1; k <= nreg; ++k)
 xterm += X (i, k) * BX (k);

 if (mn == 1)
 YT (i) = mean + xterm + YT (i);
 else
 YT (i) = xterm + YT (i);
}

for (i = 1; i <= npar; ++i)
 THETA (i) = PARAM (i) * 0.5;
THETA (npar + 1) = gamma * 0.5;
if (mn == 1)
 THETA (npar + mn + 1) = mean * 0.5;

for (i = 1; i <= nreg; ++i)
 THETA (npar + mn + 1 + i) = BX (i) * 0.5;

maxit = 50;
tol = 1e-12;

stat_opt = Nag_Garch_Stationary_True;
est_opt = Nag_Garch_Est_Initial_True;

gl3fcc (&YT (1), &X (1, 1), tdx, num, ip, iq, nreg, mn,
 &THETA (1), &SE (1), &SC (1), &COVAR (1, 1), tdc, &hp,
 &ET (1), &HT (1), &lgf, stat_opt, est_opt, maxit, tol, &fail);
if (fail.code != NE_NOERROR)
{
 Vprintf("Error from gl3fcc.

exit_status = 1;
goto END;
}

Vprintf ("Parameter estimates Standard errors Correct va-

ues\n");
for (j = 1; j <= npar; ++j)
 Vprintf ("%20.4f (%6.4f) %20.4f\n", THETA (j), SE (j),
PARAM(j));
 Vprintf ("%20.4f (%6.4f) %20.4f\n", THETA (npar+1), SE (npar+1),
gamma);
 if (mn == 1)
 Vprintf ("%20.4f (%6.4f) %20.4f\n", THETA (npar+mn+1), SE
(npar+mn+1), mean);
 for (j = 1; j <= nreg; ++j)
 Vprintf ("%20.4f (%6.4f) %20.4f\n", THETA (mn+npar+1+j), SE(mn+n-
par+1+j), BX(j));

/* now forecast nt steps ahead */

 gamma = THETA(npar+1);

 gl3fdc(num,nt,ip,iq,&THETA(1),gamma,&COVAR(1),&HT(1),&ET(1),&fail);
 Vprintf ("\n
ld step forecast = %8.4f\n",nt,COVAR(nt));

END:
if (bx) NAG_FREE (bx);
if (covar) NAG_FREE (covar);
if (et) NAG_FREE (et);
if (ht) NAG_FREE (ht);
if (param) NAG_FREE (param);
if (rvec) NAG_FREE (rvec);
if (sc) NAG_FREE (sc);
if (se) NAG_FREE (se);
if (theta) NAG_FREE (theta);
if (cvar) NAG_FREE (cvar);
if (x) NAG_FREE (x);
if (yt) NAG_FREE (yt);

return exit_status;
}

8.2 Program Data

None.

8.3 Program Results

<table>
<thead>
<tr>
<th>Parameter estimates</th>
<th>Standard errors</th>
<th>Correct values</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.2349</td>
<td>(0.0501)</td>
<td>0.2000</td>
</tr>
<tr>
<td>0.1625</td>
<td>(0.0411)</td>
<td>0.2000</td>
</tr>
<tr>
<td>0.7090</td>
<td>(0.0393)</td>
<td>0.7000</td>
</tr>
<tr>
<td>-0.6095</td>
<td>(0.1673)</td>
<td>-0.4000</td>
</tr>
<tr>
<td>2.9586</td>
<td>(0.1270)</td>
<td>3.0000</td>
</tr>
<tr>
<td>1.4986</td>
<td>(0.0811)</td>
<td>1.5000</td>
</tr>
<tr>
<td>2.5459</td>
<td>(0.1210)</td>
<td>2.5000</td>
</tr>
</tbody>
</table>

3 step forecast = 1.3388