NAG C Library Function Document

nag_tsa_multi_part_lag_corr (g13dnc)

1 **Purpose**

`nag_tsa_multi_part_lag_corr (g13dnc)` calculates the sample partial lag correlation matrices of a multivariate time series. A set of χ²-statistics and their significance levels are also returned. A call to `nag_tsa_multi_cross_corr (g13dmc)` is usually made prior to calling this routine in order to calculate the sample cross-correlation matrices.

2 **Specification**

```c
void nag_tsa_multi_part_lag_corr (Integer k, Integer n, Integer m,
       const double r0[], const double r[], Integer *maxlag,
       double parlag[],
       double x[], double pvalue[], NagError *fail)
```

3 **Description**

Let \(W_t = (w_{1t}, w_{2t}, \ldots, w_{kt})^T \), for \(t = 1, 2, \ldots, n \), denote \(n \) observations of a vector of \(k \) time series. The partial lag correlation matrix at lag \(l \), \(P(l) \), is defined to be the correlation matrix between \(W_t \) and \(W_{t+l} \), after removing the linear dependence on each of the intervening vectors \(W_{t+1}, W_{t+2}, \ldots, W_{t+l-1} \). It is the correlation matrix between the residual vectors resulting from the regression of \(W_{t+l} \) on the carriers \(W_{t+1}, \ldots, W_{t+l-1} \) and the regression of \(W_t \) on the same set of carriers; see Heyse and Wei (1985).

\(P(l) \) has the following properties.

(i) If \(W_t \) follows a vector autoregressive model of order \(p \), then \(P(l) = 0 \) for \(l > p \);
(ii) When \(k = 1 \), \(P(l) \) reduces to the univariate partial autocorrelation at lag \(l \);
(iii) Each element of \(P(l) \) is a properly normalized correlation coefficient;
(iv) When \(l = 1 \), \(P(l) \) is equal to the cross-correlation matrix at lag 1 (a natural property which also holds for the univariate partial autocorrelation function).

Sample estimates of the partial lag correlation matrices may be obtained using the recursive algorithm described in Wei (1990). They are calculated up to lag \(m \), which is usually taken to be at most \(n/4 \). Only the sample cross-correlation matrices \(\hat{R}(l) \), \(l = 0, 1, \ldots, m \) and the standard deviations of the series are required as input to `nag_tsa_multi_part_lag_corr (g13dnc)`. These may be computed by `nag_tsa_multi_cross_corr (g13dmc)`. Under the hypothesis that \(W_t \) follows an autoregressive model of order \(s - 1 \), the elements of the sample partial lag matrix \(\hat{P}(s) \), denoted by \(\hat{P}_{ij}(s) \), are asymptotically Normally distributed with mean zero and variance \(1/n \). In addition the statistic

\[
X(s) = n \sum_{i=1}^k \sum_{j=1}^k \hat{P}_{ij}(s)^2
\]

has an asymptotic χ²-distribution with \(k^2 \) degrees of freedom. These quantities, \(X(l) \), are useful as a diagnostic aid for determining whether the series follows an autoregressive model and, if so, of what order.

4 **References**

5 Parameters

1: \(k \) – Integer \hspace{1cm} \text{Input}

\text{On entry:} the dimension, \(k \), of the multivariate time series.
\text{Constraint: } k \geq 1.

2: \(n \) – Integer \hspace{1cm} \text{Input}

\text{On entry:} the number of observations in each series, \(n \).
\text{Constraint: } n \geq 2.

3: \(m \) – Integer \hspace{1cm} \text{Input}

\text{On entry:} the number, \(m \), of partial lag correlation matrices to be computed. Note this also specifies
the number of sample cross-correlation matrices that must be contained in the array \(r \).
\text{Constraint: } 1 \leq m < n.

4: \(r0[dim] \) – const double \hspace{1cm} \text{Input}

\text{Note:} the dimension, \(dim \), of the array \(r0 \) must be at least \(k \times k \).
\text{On entry:} the sample cross-correlations at lag zero/standard deviations as provided by
\text{nag_tsa_multi_cross_corr (g13dmc)}, that is, \(r0[(j-1)k+i-1] \) must contain the \((i,j)\)th element
of the sample cross-correlation matrix at lag zero if \(i \neq j \) and the standard deviation of \(i = j \), for
\(i = 1, 2, \ldots, k; \ j = 1, 2, \ldots, k \).

5: \(r[dim] \) – const double \hspace{1cm} \text{Input}

\text{Note:} the dimension, \(dim \), of the array \(r \) must be at least \(k \times k \times m \).
\text{On entry:} the sample cross-correlations as provided by \text{nag_tsa_multi_cross_corr (g13dmc)}, that is,
\(r[(l-1)k^2 + (j-1)k + i-1] \) must contain the \((i,j)\)th element of the sample cross-correlation at
lag \(l \), for \(l = 1, 2, \ldots, m; \ i = 1, 2, \ldots, k; \ j = 1, 2, \ldots, k \), where series \(j \) leads series \(i \).

6: \(\text{maxlag} \) – Integer \hspace{1cm} \text{Output}

\text{On exit:} the maximum lag up to which partial lag correlation matrices (along with \(\chi^2 \)-statistics and
their significance levels) have been successfully computed. On a successful exit \text{maxlag} \ will equal \(m \). \ If \text{fail.code} = \text{MATRIX_ILL_CONDITIONED} \ on exit, then \text{maxlag} \ will be less than \(m \).

7: \(\text{parlag}[dim] \) – double \hspace{1cm} \text{Output}

\text{Note:} the dimension, \(dim \), of the array \(\text{parlag} \) must be at least \(k \times k \times m \).
\text{On exit:} \(\text{parlag}[(l-1)k^2 + (j-1)k + i-1] \) contains the \((i,j)\)th element of the sample partial lag
correlation matrix at lag \(l \), for \(l = 1, 2, \ldots, \text{maxlag}; \ i = 1, 2, \ldots, k; \ j = 1, 2, \ldots, k \).

8: \(x[m] \) – double \hspace{1cm} \text{Output}

\text{On exit:} \(x[l-1] \) contains the \(\chi^2 \)-statistic at lag \(l \), for \(l = 1, 2, \ldots, \text{maxlag} \).

9: \(\text{pvalue}[m] \) – double \hspace{1cm} \text{Output}

\text{On exit:} \(\text{pvalue}[l-1] \) contains the significance level of the corresponding \(\chi^2 \)-statistic in \(x \) for
\(l = 1, 2, \ldots, \text{maxlag} \).

10: \(\text{fail} \) – \text{NagError} \hspace{1cm} \text{Input/Output}

\text{The NAG error parameter (see the Essential Introduction).}
6 Error Indicators and Warnings

NE_INT

On entry, \(k = \langle \text{value} \rangle \).
Constraint: \(k \geq 1 \).

On entry, \(m = \langle \text{value} \rangle \).
Constraint: \(m \geq 1 \).

On entry, \(n = \langle \text{value} \rangle \).
Constraint: \(n \geq 2 \).

NE_INT_2

On entry, \(m \geq n \): \(m = \langle \text{value} \rangle \) and \(n = \langle \text{value} \rangle \).

MATRIX_ILL_CONDITIONED

The recursive equations used to compute the partial lag correlation matrices are ill-conditioned (they have been computed up to lag \(\langle \text{value} \rangle \)).

NE_ALLOC_FAIL

Memory allocation failed.

NE_BAD_PARAM

On entry, parameter \(\langle \text{value} \rangle \) had an illegal value.

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the call is correct then please consult NAG for assistance.

7 Accuracy

The accuracy will depend upon the accuracy of the sample cross-correlations.

8 Further Comments

The time taken is roughly proportional to \(m^2 k^3 \).

If the user has calculated the sample cross-correlation matrices in the arrays \(r0 \) and \(r \), without calling nag_tsa_multi_cross_corr (g13dmc), then care must be taken to ensure they are supplied as described in Section 5. In particular, for \(l \geq 1 \), \(R_{ij}(l) \) must contain the sample cross-correlation coefficient between \(w_i(t-l) \) and \(w_j \).

The routine nag_tsa_multi_auto_corr_part (g13dbc) computes squared partial autocorrelations for a specified number of lags. It may also be used to estimate a sequence of partial autoregression matrices at lags 1, 2, ... by making repeated calls to the routine with the parameter \(nk \) set to 1, 2, The \((i,j) \)th element of the sample partial autoregression matrix at lag \(l \) is given by \(W(i,j,l) \) when \(nk \) is set equal to \(l \) on entry to nag_tsa_multi_auto_corr_part (g13dbc). Note that this is the ‘Yule–Walker’ estimate. Unlike the partial lag correlation matrices computed by nag_tsa_multi_part_lag_corr (g13dnc), when \(W_i \) follows an autoregressive model of order \(s - 1 \), the elements of the sample partial autoregressive matrix at lag \(s \) do not have variance \(1/n \), making it very difficult to spot a possible cut-off point. The differences between these matrices are discussed further by Wei (1990).

Note that nag_tsa_multi_auto_corr_part (g13dbc) takes the sample cross-covariance matrices as input whereas this routine requires the sample cross-correlation matrices to be input.
9 Example

This program computes the sample partial lag correlation matrices of two time series of length 48, up to lag 10. The matrices, their χ^2-statistics and significance levels and a plot of symbols indicating which elements of the sample partial lag correlation matrices are significant are printed. Three * represent significance at the 0.5% level, two * represent significance at the 1% level and a single * represents significance at the 5% level. The * are plotted above or below the central line depending on whether the elements are significant in a positive or negative direction.

9.1 Program Text

```c
/* nag_tsa_multi_part_lag_corr (g13dnc) Example Program. */
/* Copyright 2002 Numerical Algorithms Group. */
/* Mark 7, 2002. */
#include <stdio.h>
#include <math.h>
#include <string.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagl3.h>

static void zprint(Integer, Integer, Integer, Integer, double *, double *, double *);

int main(void)
{
    /* Scalars */
    Integer exit_status, i, j, k, m, maxlag, n, pdw;
    NagError fail;
    Nag_CovOrCorr matrix;
    /* Arrays */
    double *parlag = 0, *pvalue = 0, *r0 = 0, *r = 0, *w = 0,
    *wmean = 0, *x = 0;
    #define W(I,J) w[(J-1)*pdw + I - 1]

    INIT_FAIL(fail);
    exit_status = 0;
    Vprintf("g13dnc Example Program Results\n");
    /* Skip heading in data file */
    Vscanf("%*[^
"]");
    Vscanf("%ld%ld%ld%*[`\n"] ", &k, &n, &m);
    if (k > 0 && n >= 1 && m >= 1)
    {
        /* Allocate arrays */
        if ( !(parlag = NAG_ALLOC(k * k * m, double)) ||
            !(pvalue = NAG_ALLOC(m, double)) ||
            !(r0 = NAG_ALLOC(k * k, double)) ||
            !(r = NAG_ALLOC(k * k * m, double)) ||
            !(w = NAG_ALLOC(k * n, double)) ||
            !(wmean = NAG_ALLOC(k, double)) ||
            !(x = NAG_ALLOC(m, double)) )
        {
            Vprintf("Allocation failure\n");
            exit_status = -1;
            goto END;
        }
        pdw = k;
    }
```

```
for (i = 1; i <= k; ++i)
{
    for (j = 1; j <= n; ++j)
        Vscanf("%lf", &W(i,j));
        Vscanf("%*[\n ] ");
}

matrix = Nag_AutoCorr;
g13dmc(matrix, k, n, m, w, wmean, r0, r, &fail);
if (fail.code != NE_NOERROR)
{
    Vprintf("Error from g13dmc.\n%s\n", fail.message);
    exit_status = 1;
goto END;
}
g13dnc(k, n, m, r0, r, &maxlag, parlag, x, pvalue, &fail);
if (fail.code != NE_NOERROR)
{
    Vprintf("Error from g13dnc.\n%s\n", fail.message);
    exit_status = 1;
goto END;
}
zprint(k, n, m, k, parlag, x, pvalue);

END:
if (parlag) NAG_FREE(parlag);
if (pvalue) NAG_FREE(pvalue);
if (r0) NAG_FREE(r0);
if (r) NAG_FREE(r);
if (w) NAG_FREE(w);
if (wmean) NAG_FREE(wmean);
if (x) NAG_FREE(x);
return exit_status;
}

/* Print the partial lag correlation matrices. */
static void zprint(Integer k, Integer n, Integer m, Integer ik,
    double *parlag, double *x, double *pvalue)
{
    /* Scalars */
    double c1, c2, c3, c5, c6, c7, cnst, sum;
    Integer i2, i, j, lf, llf, ii, jj;
    /* Arrays */
    char rec[7][80];
    #define PARLAG(I,J,K) parlag[((K-1)*ik + (J-1))*ik + I-1]
    cnst = 1.0 / sqrt((double) n);
    Vprintf("\n");
    Vprintf(" PARTIAL LAG CORRELATION MATRICES\n");
    Vprintf(" "------------------------\n");
    for (lf = 1; lf <= m; ++lf)
    {
        Vprintf("\n");
        Vprintf(" Lag = %2ld\n", lf);
        for (ii = 1; ii <= k; ii++)
        {
            for (jj = 1; jj <= k; jj++)
                Vprintf("%9.3f", PARLAG(ii,jj,lf));
        Vprintf("\n");
    }
Vprintf("\n");
Vprintf(" Standard error = 1 / SQRT(N) = %5.3f\n", cnst);

/* Print indicator symbols to indicate significant elements. */
Vprintf("\n");
Vprintf(" TABLES OF INDICATOR SYMBOLS\n");
Vprintf(" ---------------------------\n");
Vprintf("\n");
Vprintf(" For Lags 1 to %2ld\n", m);
Vprintf("\n");

/* Set up the critical values */
c1 = cnst * 3.29;
c2 = cnst * 2.58;
c3 = cnst * 1.96;
c5 = -c3;
c6 = -c2;
c7 = -c1;

for (i = 1; i <= k; ++i)
{
    for (j = 1; j <= k; ++j)
    {
        Vprintf("\n");
        Vprintf("\n");
        if (i == j)
        {
            Vprintf("Auto-correlation function for series %2ld\n", i);
            Vprintf("\n");
        }
        else
        {
            Vprintf("Cross-correlation function for series %2ld
" and series%2ld\n", i, j);
            Vprintf("\n");
        }
    }

    /* Clear the last plot with blanks */
    sprintf(&rec[0][0], " 0.005 :");
    sprintf(&rec[1][0], " + 0.01 :");
    sprintf(&rec[2][0], " 0.05 :");
    sprintf(&rec[3][0], " Sig. Level : - - - - - - - - - -
Lags");
    sprintf(&rec[4][0], " 0.05 :");
    sprintf(&rec[5][0], " - 0.01 :");
    sprintf(&rec[6][0], " 0.005 :");
    for (i2 = 0; i2 < 7; ++i2)
    {
        for (ii = strlen(&rec[i2][0]); ii < 80; ii++)
            rec[i2][ii] = ' ';
    }

    for (lf = 1; lf <= m; ++lf)
    {
        llf = lf * 2 + 21;
        sum = PARLAG(i, j, lf);
        /* Check for significance */
        if (sum > c1)
            rec[0][llf] = '*';
        if (sum > c2)
            rec[1][llf] = '*';
        if (sum > c3)
            rec[2][llf] = '*';
        if (sum < c5)
            rec[4][llf] = '*';
        if (sum < c6)
            rec[5][llf] = '*';
        if (sum < c7)
            rec[6][llf] = '*';
    }
}
/* Print */
for (i2 = 0; i2 < 7; ++i2)
{
    /* Terminate the string */
    for (ii = 80; ii > 1 && rec[i2][ii-1] == ' '; ii--);
    rec[i2][ii] = '\0';
    /* Print the string */
    Vprintf("%s\n", &rec[i2][0]);
}

/* Print the chi-square statistics and p-values. */
Vprintf("\n");
Vprintf(" Lag Chi-square statistic P-value\n");
Vprintf(" --- ---------------- -------\n");

for (lf = 1; lf <= m; ++lf)
    Vprintf("%4ld %17.3f %18.4f\n", lf, x[lf-1], pvalue[lf-1]);

return;

9.2 Program Data

9.3 Program Results
Lag = 7
-0.036  0.261
0.126  0.012

Lag = 8
0.077  0.381
0.027  -0.149

Lag = 9
-0.065  -0.387
0.189  0.057

Lag = 10
-0.026  -0.286
0.028  -0.173

Standard error = 1 / SQRT(N) = 0.144

TABLES OF INDICATOR SYMBOLS
-----------------------------
For Lags 1 to 10

Auto-correlation function for series 1

<table>
<thead>
<tr>
<th>Lag</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.005</td>
</tr>
<tr>
<td>1</td>
<td>0.01</td>
</tr>
<tr>
<td>2</td>
<td>0.05</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sig. Level</th>
<th>Lags</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.05</td>
<td></td>
</tr>
<tr>
<td>0.01</td>
<td></td>
</tr>
<tr>
<td>0.005</td>
<td></td>
</tr>
</tbody>
</table>

Cross-correlation function for series 1 and series 2

<table>
<thead>
<tr>
<th>Lag</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.005</td>
</tr>
<tr>
<td>1</td>
<td>0.01</td>
</tr>
<tr>
<td>2</td>
<td>0.05</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sig. Level</th>
<th>Lags</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.05</td>
<td></td>
</tr>
<tr>
<td>0.01</td>
<td></td>
</tr>
<tr>
<td>0.005</td>
<td></td>
</tr>
</tbody>
</table>

Cross-correlation function for series 2 and series 1

<table>
<thead>
<tr>
<th>Lag</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.005</td>
</tr>
<tr>
<td>1</td>
<td>0.01</td>
</tr>
<tr>
<td>2</td>
<td>0.05</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sig. Level</th>
<th>Lags</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.05</td>
<td></td>
</tr>
<tr>
<td>0.01</td>
<td></td>
</tr>
<tr>
<td>0.005</td>
<td></td>
</tr>
</tbody>
</table>

Auto-correlation function for series 2

<table>
<thead>
<tr>
<th>Lag</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.005</td>
</tr>
<tr>
<td>1</td>
<td>0.01</td>
</tr>
<tr>
<td>2</td>
<td>0.05</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sig. Level</th>
<th>Lags</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.05</td>
<td></td>
</tr>
<tr>
<td>0.01</td>
<td></td>
</tr>
<tr>
<td>0.005</td>
<td></td>
</tr>
</tbody>
</table>

Lag | Chi-square statistic | P-value |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>44.362</td>
<td>0.0000</td>
</tr>
<tr>
<td>2</td>
<td>3.824</td>
<td>0.4304</td>
</tr>
<tr>
<td>3</td>
<td>6.219</td>
<td>0.1834</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>4</td>
<td>5.094</td>
<td>0.2778</td>
</tr>
<tr>
<td>5</td>
<td>5.609</td>
<td>0.2303</td>
</tr>
<tr>
<td>6</td>
<td>1.170</td>
<td>0.8830</td>
</tr>
<tr>
<td>7</td>
<td>4.098</td>
<td>0.3929</td>
</tr>
<tr>
<td>8</td>
<td>8.371</td>
<td>0.0789</td>
</tr>
<tr>
<td>9</td>
<td>9.244</td>
<td>0.0553</td>
</tr>
<tr>
<td>10</td>
<td>5.435</td>
<td>0.2455</td>
</tr>
</tbody>
</table>