nag_tsa_multi_auto_corr_part (g13dbc) calculates the multivariate partial autocorrelation function of a multivariate time series.

The input is a set of lagged autocovariance matrices $C_0, C_1, C_2, \ldots, C_m$. These will generally be sample values such as are obtained from a multivariate time series using nag_tsa_multi_cross_corr (g13dmc).

The main calculation is the recursive determination of the coefficients in the finite lag (forward) prediction equation

$$xt = \Phi_{l,1}x_{t-1} + \cdots + \Phi_{l,l}x_{t-l} + e_{t,l}$$

and the associated backward prediction equation

$$x_{t-l-1} = \Psi_{l,1}x_{t-1} + \cdots + \Psi_{l,l}x_{t-l} + f_{t,l}$$

together with the covariance matrices D_l of $e_{t,l}$ and G_l of $f_{t,l}$.

The recursive cycle, by which the order of the prediction equation is extended from l to $l + 1$, is to calculate

$$M_{l+1} = C_{l+1}' - \Phi_{l,1}C_{l}' - \cdots - \Phi_{l,l}C_{l}'$$

(1)

then $\Phi_{l+1,l+1} = M_{l+1}D_{l+1}^{-1}$, $\Psi_{l+1,l+1} = M_{l+1}'G_{l+1}^{-1}$

from which

$$\Phi_{l+1,j} = \Phi_{l,j} - \Phi_{l+1,l+1}\Psi_{l+1,j+1}, \quad j = 1, 2, \ldots, l$$

(2)

and

$$\Psi_{l+1,j} = \Psi_{l,j} - \Psi_{l+1,l+1}\Phi_{l+1,j+1}, \quad j = 1, 2, \ldots, l$$

(3)

Finally, $D_{l+1} = D_l - M_{l+1}\Phi_{l+1,l+1}$, and $G_{l+1} = G_l - M_{l+1}'\Psi_{l+1,l+1}$.

(Here $'$ denotes the transpose of a matrix.)

The cycle is initialised by taking (for $l = 0$)

$$D_0 = G_0 = C_0.$$

In the step from $l = 0$ to 1, the above equations contain redundant terms and simplify. Thus (1) becomes $M_1 = C_1'$ and neither (2) or (3) are needed.

Quantities useful in assessing the effectiveness of the prediction equation are generalized variance ratios

$$v_l = \det D_l/\det C_0, \quad l = 1, 2, \ldots$$

and multiple squared partial autocorrelations

$$p_l^2 = 1 - v_l/v_{l-1}.$$
4 References

5 Parameters

1: \(c0[dim] \) – const double
 Input

 Note: the dimension, \(dim \), of the array \(c0 \) must be at least \(ns \times ns \).

 On entry: contains the zero lag cross-covariances between the \(ns \) series as returned by nag_tsa_multi_cross_corr (g13dmc). (\(c0 \) is assumed to be symmetric, upper triangle only is used.)

2: \(c[dim] \) – const double
 Input

 Note: the dimension, \(dim \), of the array \(c \) must be at least \(ns \times ns \times nl \).

 On entry: the \(k \) cross-covariances as returned by nag_tsa_multi_cross_corr (g13dmc).

3: \(ns \) – Integer
 Input

 On entry: the number of time series, \(k \), whose cross-covariances are supplied in \(c \) and \(c0 \).

 Constraint: \(ns \geq 1 \).

4: \(nl \) – Integer
 Input

 On entry: the maximum lag, \(m \), for which cross-covariances are supplied in \(c \).

 Constraint: \(nl \geq 1 \).

5: \(nk \) – Integer
 Input

 On entry: the number of lags to which partial auto-correlations are to be calculated.

 Constraint: \(1 \leq nk \leq nl \).

6: \(p[nk] \) – double
 Output

 On exit: the multiple squared partial autocorrelations from lags 1 to \(nvp \); that is, \(p[l-1] \) contains \(p_l^2 \), for \(l = 1, 2, \ldots, nvp \). For lags \(nvp + 1 \) to \(nk \) the elements of \(p \) are set to zero.

7: \(v0 \) – double *
 Output

 On exit: the lag zero prediction error variance (equal to the determinant of \(c0 \)).

8: \(v[nk] \) – double
 Output

 On exit: the prediction error variance ratios from lags 1 to \(nvp \); that is, \(v[l-1] \) contains \(v_l \), for \(l = 1, 2, \ldots, nvp \). For lags \(nvp + 1 \) to \(nk \) the elements of \(v \) are set to zero.

9: \(d[dim] \) – double
 Output

 Note: the dimension, \(dim \), of the array \(d \) must be at least \(ns \times ns \times nk \).

 On exit: the prediction error variance matrices at lags 1 to \(nvp \), \(d[(l-1)k^2 + (j-1)k + i - 1] \) contains the \((i,j) \)th prediction error covariance of series \(i \) and series \(j \) at lag \(l \). Series \(j \) leads series \(i \).

10: \(db[dim] \) – double
 Output

 Note: the dimension, \(dim \), of the array \(db \) must be at least \(ns \times ns \).
On exit: the backward prediction error variance matrix at lag nvp, $\text{db}[(j-1)k + i - 1]$ contains the backward prediction error covariance of series i and series j.

11: $\text{w}[\text{dim}]$ – double
Output

Note: the dimension, dim, of the array w must be at least $\text{ns} \times \text{ns} \times \text{nk}$.

On exit: the prediction coefficient matrices at lags 1 to nvp, $\text{w}[(l-1)k^2 + (j-1)k + i - 1]$ contains the jth prediction coefficient of series i at lag l (i.e., the (i,j)th element of $\Phi_{L,i}$).

12: $\text{wb}[\text{dim}]$ – double
Output

Note: the dimension, dim, of the array wb must be at least $\text{ns} \times \text{ns} \times \text{nk}$.

On exit: the backward prediction coefficient matrices at lags 1 to nvp, $\text{wb}[(l-1)k^2 + (j-1)k + i - 1]$ contains the jth backward prediction coefficient of series i at lag l (i.e., the (i,j)th element of $\Psi_{L,i}$).

13: nvp – Integer
Output

On exit: the maximum lag, L, for which calculation of p, v, d, db, w and wb was successful. If the routine completes successfully nvp will equal nk.

14: fail – NagError
Input/Output

The NAG error parameter (see the Essential Introduction).

6 Error Indicators and Warnings

NE_INT

On entry, $\text{ns} = \langle\text{value}\rangle$.
Constraint: $\text{ns} \geq 1$.

On entry, $\text{nk} = \langle\text{value}\rangle$.
Constraint: $\text{nk} \geq 1$.

On entry, $\text{nl} = \langle\text{value}\rangle$.
Constraint: $\text{nl} \geq 1$.

NE_INT_2

On entry, $\text{nk} > \text{nl}$: $\text{nk} = \langle\text{value}\rangle$, $\text{nl} = \langle\text{value}\rangle$.

NE_POS_DEF

At lag $\text{nvp} + 1 \leq \text{nk}$, d is not positive-definite, $\text{nvp} = \langle\text{value}\rangle$, $\text{nk} = \langle\text{value}\rangle$.
$c0$ is not positive-definite.

NE_ALLOC_FAIL

Memory allocation failed.

NE_BAD_PARAM

On entry, parameter $\langle\text{value}\rangle$ had an illegal value.

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the call is correct then please consult NAG for assistance.
7 Accuracy

The conditioning of the problem depends on the prediction error variance ratios. Very small values of
these may indicate loss of accuracy in the computations.

8 Further Comments

The time taken by the routine is roughly proportional to $nk^2 \times ns^3$.

If sample autocorrelation matrices are used as input, then the output will be relevant to the original series
scaled by their standard deviations. If these autocorrelation matrices are produced by
\texttt{nag_tsa_multi_cross_corr (g13dmc)}, the user must replace the diagonal elements of C_0 (otherwise used
to hold the series variances) by 1.

9 Example

The example program reads the autocovariance matrices for four series from lag 0 to 5. It calls
\texttt{nag_tsa_multi_auto_corr_part (g13dbc)} to calculate the multivariate partial autocorrelation function and
other related matrices of statistics up to lag 3. It prints the results.

9.1 Program Text

/* nag_tsa_multi_auto_corr_part (g13dbc) Example Program. *
 * Copyright 2002 Numerical Algorithms Group.
 * Mark 7, 2002.
 */

#include <stdio.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagg13.h>

int main(void)
{
 /* Scalars */
 double v0;
 Integer exit_status, il, i, j, j1, k, nk, nl, ns, nvp,
 pdc0, pddb;
 NagError fail;
 Nag_OrderType order;
 /* Arrays */
 double *c0 = 0, *c = 0, *d = 0, *db = 0, *p = 0, *v = 0, *w = 0,
 *wb = 0;

 #define C(I,J,K) c[((K-1)*ns + (J-1))*ns+I-1]
 #define D(I,J,K) d[((K-1)*ns + (J-1))*ns+I-1]
 #define W(I,J,K) w[((K-1)*ns + (J-1))*ns+I-1]
 #define WB(I,J,K) wb[((K-1)*ns + (J-1))*ns+I-1]

 #ifdef NAG_COLUMN_MAJOR
 #define C0(I,J) c0[(J-1)*pdc0 +I-1]
 #define DB(I,J) db[(J-1)*pddb +I-1]
 order = Nag_ColMajor;
 #else
 #define C0(I,J) c0[(I-1)*pdc0 +J-1]
 #define DB(I,J) db[(I-1)*pddb +J-1]
 order = Nag_RowMajor;
 #endif

 INIT_FAIL(fail);
 exit_status = 0;

 Vprintf("g13dbc Example Program Results\n");
/* Skip heading in data file */
Vscanf("%*[\n"]);

/* Read series length, and numbers of lags */
Vscanf("%ld%ld%ld%*[\n"] , &ns, &nl, &nk);
if (ns > 0 && nl > 0 && nk > 0)
{
 /* Allocate arrays */
 if (!(c0 = NAG_ALLOC(ns * ns, double)) ||
 !(c = NAG_ALLOC(ns * ns * nl, double)) ||
 !(d = NAG_ALLOC(ns * ns * nk, double)) ||
 !(db = NAG_ALLOC(ns * ns, double)) ||
 !(p = NAG_ALLOC(nk, double)) ||
 !(v = NAG_ALLOC(nk, double)) ||
 !(w = NAG_ALLOC(ns* ns * nk, double)) ||
 !(wb = NAG_ALLOC(ns * ns * nk, double)))
 {
 Vprintf("Allocation failure\n");
 exit_status = -1;
 goto END;
 }
pdc0 = ns;
ppdb = ns;
/* Read autocovariances */
for (i = 1; i <= ns; ++i)
 {
 for (j = 1; j <= ns; ++j)
 Vscanf("%lf", &C0(i,j));
 }
Vscanf("%*[\n"]);
for (k = 1; k <= nl; ++k)
 {
 for (i = 1; i <= ns; ++i)
 {
 for (j = 1; j <= ns; ++j)
 Vscanf("%lf", &C(i,j,k));
 }
 }
Vscanf("%*[\n"]);
/* Call routine to calculate multivariate partial
autocorrelation function */

 gl3dbc(c0, c, ns, nl, nk, p, &v0, v, d, db, w, wb,
 &nvp, &fail);
if (fail.code != NE_NOERROR)
 {
 Vprintf("Error from gl3dbc.\n", fail.message);
 exit_status = 1;
 goto END;
 }
if (fail.code == NE_NOERROR || fail.code == NE_POS_DEF)
 {
 Vprintf("\n");
 Vprintf("Number of valid parameters =\n", nvp);
 Vprintf("\n");
 Vprintf("Multivariate partial autocorrelations\n");
 for (il = 1; il <= nk; ++il)
 {
 Vprintf("%13.5f", p[il-1]);
 if (il % 5 == 0 || il == nk)
 Vprintf("\n");
 }
 }
Vprintf("\n");
Vprintf("Zero lag predictor error variance determinant\n");
Vprintf("followed by error variance ratios\n");
Vprintf("%12.5f", v0);

for (i1 = 1; i1 <= nk; ++i1)
{
 Vprintf("%13.5f", v[i1-1]);
 if (i1 % 5 == 0 || i1 == nk)
 Vprintf("\n");
}

Vprintf("\n");
Vprintf("Prediction error variances\n");
Vprintf("\n");

for (k = 1; k <= nk; ++k)
{
 Vprintf("Lag =%5ld\n", k);
 for (i = 1; i <= ns; ++i)
 {
 for (j1 = 1; j1 <= ns; ++j1)
 {
 Vprintf("%13.5f", D(i,j1,k));
 if (j1 % 5 == 0 || j1 == ns)
 Vprintf("\n");
 }
 Vprintf("\n");
 }

Vprintf("\n");
Vprintf("Last backward prediction error variances\n");
Vprintf("\n");

for (i = 1; i <= ns; ++i)
{
 for (j1 = 1; j1 <= ns; ++j1)
 {
 Vprintf("%13.5f", DB(i,j1));
 if (j1 % 5 == 0 || j1 == ns)
 Vprintf("\n");
 }
 Vprintf("\n");
}

Vprintf("\n");
Vprintf("Prediction coefficients\n");
Vprintf("\n");

for (k = 1; k <= nk; ++k)
{
 Vprintf("Lag =%5ld\n", k);
 for (i = 1; i <= ns; ++i)
 {
 for (j1 = 1; j1 <= ns; ++j1)
 {
 Vprintf("%13.5f", W(i,j1,k));
 if (j1 % 5 == 0 || j1 == ns)
 Vprintf("\n");
 }
 }
}

Vprintf("\n");
Vprintf("Backward prediction coefficients\n");
Vprintf("\n");

for (k = 1; k <= nk; ++k)
{
 Vprintf("Lag =%5ld\n", k);
 for (i = 1; i <= ns; ++i)
for (j1 = 1; j1 <= ns; ++j1)
{
 Vprintf("%13.5f", WB(i,j1, k));
 if (j1 % 5 == 0 || j1 == ns)
 Vprintf("\n");
}
Vprintf("\n");
}

END:
if (c0) NAG_FREE(c0);
if (c) NAG_FREE(c);
if (d) NAG_FREE(d);
if (db) NAG_FREE(db);
if (p) NAG_FREE(p);
if (v) NAG_FREE(v);
if (w) NAG_FREE(w);
if (wb) NAG_FREE(wb);
return exit_status;
}

9.2 Program Data
g13dbc Example Program Data

4 5 3
.10900E-01 -.77917E-02 .13004E-02 .12654E-02
-.77917E-02 .57040E-01 .24180E-02 .14409E-01
.13004E-02 .24180E-02 .43960E-01 -.21421E-01
.12654E-02 .14409E-01 -.21421E-01 .72289E-01
.45889E-02 .46510E-03 -.13275E-03 .77531E-02
-.24419E-02 -.11667E-01 -.21956E-01 -.45803E-02
.11080E-02 -.80479E-02 .13621E-01 -.85868E-02
-.50614E-03 .14045E-01 -.10087E-02 .12269E-01
.18652E-02 -.64389E-02 .88307E-02 -.24808E-02
-.11865E-01 .72367E-02 -.1902E-01 .59069E-02
-.80370E-02 .14306E-01 .14546E-01 .13510E-01
-.21791E-02 -.29528E-01 -.15887E-01 .88308E-03
-.80550E-04 -.37759E-02 .75463E-02 -.42276E-02
.41447E-02 -.37987E-02 .19332E-02 -.17564E-01
-.10582E-01 .67733E-02 .69832E-02 .61747E-02
.41352E-02 -.16013E-01 .17043E-01 -.13412E-01
.76079E-03 -.10134E-02 .11870E-01 -.41651E-02
.36014E-02 -.36375E-02 -.25571E-01 .50218E-02
-.13924E-01 .11718E-01 -.59088E-02 .59297E-02
.10739E-01 -.14571E-01 .13816E-01 -.12588E-01
-.64365E-03 -.44556E-02 .51334E-02 .71587E-03
.63617E-02 -.15217E-03 .27270E-02 -.22261E-02
-.85855E-02 -.14468E-02 -.28698E-02 .44384E-02
.68339E-02 -.21790E-02 .13759E-01 .28217E-03

9.3 Program Results
g13dbc Example Program Results

Number of valid parameters = 3

Multivariate partial autocorrelations
0.64498 0.92669 0.84300

Zero lag predictor error variance determinant followed by error variance ratios
0.00000 0.35502 0.02603 0.00409

Prediction error variances
Lag = 1
0.00811 -0.00511 0.00159 -0.00029
-0.00511 0.04089 0.00757 0.01843
0.00159 0.00757 0.03834 -0.01894
-0.00029 0.01843 -0.01894 0.06760

Lag = 2
0.00354 -0.00087 -0.00075 -0.00105
-0.00087 0.01946 0.00535 0.00566
-0.00075 0.00535 0.01900 -0.01071
-0.00105 0.00566 -0.01071 0.04058

Lag = 3
0.00301 -0.00087 -0.00054 0.00065
-0.00087 0.01824 0.00872 0.00247
-0.00054 0.00872 0.00935 -0.00216
0.00065 0.00247 -0.00216 0.02254

Last backward prediction error variances
Lag = 3
0.00331 -0.00392 -0.00106 0.00592
-0.00392 0.01890 0.00348 -0.00330
-0.00106 0.00348 0.01003 -0.01054
0.00592 -0.00330 -0.01054 0.03336

Prediction coefficients
Lag = 1
0.81861 0.23399 -0.17097 0.09256
0.06738 -0.48720 -0.14064 0.04295
0.15036 0.11924 -0.36725 -0.42092
-0.70971 0.02998 0.59779 0.34610

Lag = 2
-0.34049 -0.13370 0.40610 -0.02183
-1.27574 -0.13591 -0.65779 -0.11267
-0.45439 0.19379 0.63420 0.33920
-0.43237 -0.54848 -0.62897 0.16670

Lag = 3
0.16437 0.13858 0.01290 0.03463
0.39291 0.07407 -0.08802 -0.15361
-1.29240 -0.24489 0.30235 0.39442
0.89768 -0.39040 0.25151 -0.28304

Backward prediction coefficients
Lag = 1
0.41541 0.06149 0.15319 0.05079
0.12370 -0.26471 -0.22721 0.48503
-0.86933 -0.47373 0.37924 0.13814
1.30779 -0.09178 -1.45398 -0.21967

Lag = 2
-0.06740 -0.12255 -0.13673 -0.09730
-1.24801 0.03090 0.51706 -0.28925
0.98045 -0.20194 0.16307 -0.10869
-1.68389 -0.74589 0.52900 0.41580

Lag = 3
0.03794 0.10491 -0.21635 0.08105
0.75392 0.22603 -0.25661 -0.47450
-0.00338 0.05636 -0.08818 0.12723
0.55022 -0.41232 0.71649 -0.14565