nag_tsa_gain_phase_bivar (g13cfc)

1. Purpose
For a bivariate time series, nag_tsa_gain_phase_bivar (g13cfc) calculates the gain and phase together with lower and upper bounds from the univariate and bivariate spectra.

2. Specification

```c
#include <nag.h>
#include <nagg13.h>
void nag_tsa_gain_phase_bivar(double xg[], double yg[], Complex xyg[],
   Integer ng, double stats[], double gn[], double gnlw[],
   double gnup[], double ph[], double phlw[], double phup[],
   NagError *fail)
```

3. Description
Estimates of the gain $G(\omega)$ and phase $\phi(\omega)$ of the dependency of series y on series x at frequency ω are given by

\[
\hat{G}(\omega) = \frac{A(\omega)}{f_{xx}(\omega)},
\]
\[
\hat{\phi}(\omega) = \cos^{-1}\left(\frac{f_{xy}(\omega)}{A(\omega)}\right), \quad \text{if } qf(\omega) \geq 0
\]
\[
\hat{\phi}(\omega) = 2\pi - \cos^{-1}\left(\frac{f_{xy}(\omega)}{A(\omega)}\right), \quad \text{if } qf(\omega) < 0.
\]

The quantities used in these definitions are obtained as in Section 3 of the document for nag_tsa_cross_spectrum_bivar (g13cec).

Confidence limits are returned for both gain and phase, but should again be taken as very approximate when the coherency $W(\omega)$, as calculated by nag_tsa_gain_phase_bivar, is not significant. These are based on the assumption that both $(\hat{G}(\omega)/G(\omega)) - 1$ and $\hat{\phi}(\omega)$ are Normal with variance

\[
\frac{1}{d}\left(\frac{1}{W(\omega)} - 1\right).
\]

Although the estimate of $\phi(\omega)$ is always given in the range $[0, 2\pi]$, no attempt is made to restrict its confidence limits to this range.

4. Parameters

- **xg[ng]**
 Input: the ng univariate spectral estimates, $f_{xx}(\omega)$, for the x series.

- **yg[ng]**
 Input: the ng univariate spectral estimates, $f_{yy}(\omega)$, for the y series.

- **xyg[ng]**
 Input: $f_{xy}(\omega)$ the ng bivariate spectral estimates for the x and y series. The x series leads the y series.

 Note: the two univariate and the bivariate spectra must each have been calculated using the same amount of smoothing. The frequency width and the shape of the window and the frequency division of the spectral estimates must be the same. The spectral estimates and statistics must also be unlogged.

- **ng**
 Input: the number of spectral estimates in each of the arrays xg, yg and xyg. It is also the number of gain and phase estimates.

 Constraint: ng \geq 1.
stats[4]
Input: the 4 associated statistics for the univariate spectral estimates for the x and y series.
Constraint: stats[0] \geq 3.0.

gn[ng]
Output: the ng gain estimates, \(\hat{G}(\omega) \), at each frequency \(\omega \).

gnlw[ng]
Output: the ng lower bounds for the ng gain estimates.

gnup[ng]
Output: the ng upper bounds for the ng gain estimates.

ph[ng]
Output: the ng phase estimates, \(\hat{\phi}(\omega) \), at each frequency \(\omega \).

phlw[ng]
Output: the ng lower bounds for the ng phase estimates.

phup[ng]
Output: the ng upper bounds for the ng phase estimates.

fail
The NAG error parameter, see the Essential Introduction to the NAG C Library.

5. Error Indications and Warnings

NE_INT_ARG_LT
On entry, ng must not be less than 1: ng = ⟨value⟩.

NE_REAL_ARG_LT
On entry, stats[0] must not be less than 3.0: stats[0] = ⟨value⟩.

NE_BIVAR_SPECTRAL_ESTIM_ZERO
A bivariate spectral estimate is zero.
For this frequency the gain and the phase and their bounds are set to zero.

NE_UNIVAR_SPECTRAL_ESTIM_NEG
A bivariate spectral estimate is negative.
For this frequency the gain and the phase and their bounds are set to zero.

NE_UNIVAR_SPECTRAL_ESTIM_ZERO
A bivariate spectral estimate is zero.
For this frequency the gain and the phase and their bounds are set to zero.

NE_SQUARED_FREQ_GT_ONE
A calculated value of the squared coherency exceeds one.
For this frequency the squared coherency is reset to 1.0 in the formulae for the gain and phase bounds.

NE_ALLOC_FAIL
Memory allocation failed.

NE_INTERNAL_ERROR
An internal error has occurred in this function. Check the function call and any array sizes. If the call is correct then please consult NAG for assistance.

6. Further Comments
The time taken by the routine is approximately proportional to ng.

6.1. Accuracy
All computations are very stable and yield good accuracy.
6.2. References

7. See Also
None

8. Example
The example program reads the set of univariate spectrum statistics, the 2 univariate spectra and the cross spectrum at a frequency division of \(\frac{2\pi}{20}\) for a pair of time series. It calls `nag_tsa_gain_phase_bivar` to calculate the gain and the phase and their bounds and prints the results.

8.1. Program Text
/* `nag_tsa_gain_phase_bivar` Example Program. */
* Mark 4, 1996.
*
#include <nag.h>
#include <stdio.h>
#include <nag_stdlib.h>
#include <naga02.h>
#include <nagg13.h>

#define L 80
#define KC 8*L
#define NGMAX KC
#define NXYMAX 300

main()
{

double stats[4];
double x[KC], y[KC];
double pxy;
double pw;
double gnlw[NGMAX], gnup[NGMAX], phlw[NGMAX],
phup[NGMAX];
double gn[NGMAX], ph[NGMAX];
double *xg, *yg;
Complex *xyg;
Integer i, j, ng, is;
Integer mw;
Integer nxy;
Integer kc=KC, l=L;

Vprintf("g13cfc Example Program Results\n");
/* Skip heading in data file */
Vscanf("%*[\n] ");
Vscanf("%ld ", &nxy);
if (nxy > 0 && nxy <= NXYMAX)
{
 for (i = 1; i <= nxy; ++i)
 Vscanf("%lf ", &x[i-1]);
 for (i = 1; i <= nxy; ++i)
 Vscanf("%lf ", &y[i-1]);

...
/ Set parameters for call to g13cbc and g13cdc
 */
pxy = 0.1;
/* Window shape parameter and zero covariance at lag 16 */
pw = .5;
/* Alignment shift of 3 */
is = 3;
/* Obtain univariate spectrum for the x and the y series */
g13cbc(nxy, Nag_Mean, pxy, mw, pw, l, kc, Nag_Unlogged, x, &xg,
 &ng, stats, NAGERR_DEFAULT);
g13cbc(nxy, Nag_Mean, pxy, mw, pw, l, kc, Nag_Unlogged, y, &yg,
 &ng, stats, NAGERR_DEFAULT);
/* Obtain cross spectrum of the bivariate series */
g13cdc(nxy, Nag_Mean, pxy, mw, is, pw, l, kc, x, y, &xyg,
 &ng, NAGERR_DEFAULT);
g13cfc(xg, yg, xyg, ng, stats, gn, gnlw, gnup, ph, phlw,
 phup, NAGERR_DEFAULT);
Vprintf("\n");
Vprintf(" The gain\n");
Vprintf(" Value bound bound\n");
for (j = 1; j <= ng; ++j)
 Vprintf("%6ld %10.4f %10.4f %10.4f\n",
 j - 1, gn[j - 1], gnlw[j - 1], gnup[j - 1]);
Vprintf("\n");
Vprintf(" The phase\n");
Vprintf(" Value bound bound\n");
for (j = 1; j <= ng; ++j)
 Vprintf("%6ld %10.4f %10.4f %10.4f\n",
 j - 1, ph[j - 1], phlw[j - 1], phup[j - 1]);
NAG_FREE(xg);
NAG_FREE(yg);
NAG_FREE(xyg);
exit(EXIT_SUCCESS);

8.2. Program Data
g13cfc Example Program Data
296
-0.109 0.000 0.178 0.339 0.373 0.441 0.461 0.461 0.461 0.461 0.284
 0.127 0.180 0.558 0.355 0.421 1.520 0.302 0.284 0.284 0.284 0.284
-0.475 -0.193 0.088 0.435 0.771 0.866 0.875 0.891
 0.987 1.263 1.775 1.976 1.934 1.866 1.832 1.767
 1.608 1.265 0.790 0.360 0.115 0.088 0.331 0.645
 0.960 1.409 2.670 2.834 2.812 2.483 1.929 1.485
 1.214 1.239 1.608 1.905 2.023 1.815 0.535 0.122
 0.009 0.164 0.671 1.019 1.146 1.155 1.112 0.475
 1.223 1.257 1.157 0.913 0.620 0.255 0.088 0.088
-1.565 -1.799 -1.825 -1.465 -0.944 -0.570 -0.431 -0.577
-0.960 -1.216 -1.875 -1.891 -1.746 -1.474 -1.201 -0.927
-0.524 0.040 0.788 0.943 0.930 1.006 1.137 1.198
 1.054 0.595 0.080 -0.314 -0.288 -0.153 -0.109 -0.187
-0.255 0.299 -0.007 0.254 0.330 0.102 0.423 -1.139
-2.275 -2.594 -2.716 -2.510 -1.790 -1.346 -1.081 -0.910
-0.876 -0.885 -0.800 -0.544 -0.416 -0.271 0.000 0.403
 0.841 1.285 1.607 1.746 1.683 1.485 0.993 0.648
 0.577 0.577 0.632 0.747 0.999 0.993 0.968 0.790
 0.399 -0.161 -0.553 -0.603 -0.424 -0.194 -0.049 0.060
 0.161 0.301 0.517 0.566 0.560 0.573 0.592 0.671
 0.933 1.337 1.460 1.353 0.772 0.218 -0.237 -0.714
-1.099 -1.269 -1.175 -0.676 0.033 0.556 0.643 0.484
Program Results

g13cfc Example Program Results

<table>
<thead>
<tr>
<th>Value</th>
<th>Lower bound</th>
<th>Upper bound</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>3.1926</td>
<td>3.4685</td>
</tr>
<tr>
<td>1</td>
<td>3.1578</td>
<td>3.4384</td>
</tr>
<tr>
<td>2</td>
<td>3.0407</td>
<td>3.3018</td>
</tr>
<tr>
<td>3</td>
<td>2.7859</td>
<td>3.0178</td>
</tr>
<tr>
<td>4</td>
<td>2.6321</td>
<td>2.8954</td>
</tr>
<tr>
<td>5</td>
<td>2.4180</td>
<td>2.7416</td>
</tr>
<tr>
<td>6</td>
<td>2.1902</td>
<td>2.5372</td>
</tr>
<tr>
<td>7</td>
<td>2.1475</td>
<td>2.4917</td>
</tr>
<tr>
<td>8</td>
<td>2.0064</td>
<td>2.3677</td>
</tr>
<tr>
<td>9</td>
<td>1.8070</td>
<td>2.1665</td>
</tr>
<tr>
<td>10</td>
<td>1.7362</td>
<td>2.1362</td>
</tr>
<tr>
<td>11</td>
<td>1.5189</td>
<td>1.9531</td>
</tr>
<tr>
<td>12</td>
<td>1.4541</td>
<td>1.9269</td>
</tr>
<tr>
<td>13</td>
<td>1.3191</td>
<td>1.8461</td>
</tr>
<tr>
<td>14</td>
<td>1.0223</td>
<td>1.5720</td>
</tr>
<tr>
<td>15</td>
<td>0.9329</td>
<td>1.5070</td>
</tr>
<tr>
<td>16</td>
<td>0.8130</td>
<td>1.4183</td>
</tr>
<tr>
<td>17</td>
<td>0.6026</td>
<td>1.3448</td>
</tr>
<tr>
<td>18</td>
<td>0.2708</td>
<td>1.8485</td>
</tr>
<tr>
<td>19</td>
<td>0.3623</td>
<td>1.6367</td>
</tr>
<tr>
<td>20</td>
<td>0.3597</td>
<td>1.8653</td>
</tr>
<tr>
<td>21</td>
<td>0.3692</td>
<td>2.3027</td>
</tr>
<tr>
<td>22</td>
<td>0.3580</td>
<td>1.7095</td>
</tr>
<tr>
<td>23</td>
<td>0.2272</td>
<td>2.0124</td>
</tr>
<tr>
<td>24</td>
<td>0.1910</td>
<td>2.5243</td>
</tr>
<tr>
<td>25</td>
<td>0.3826</td>
<td>1.4128</td>
</tr>
<tr>
<td>26</td>
<td>0.4191</td>
<td>1.6261</td>
</tr>
</tbody>
</table>
The phase

<table>
<thead>
<tr>
<th>Value</th>
<th>Lower bound</th>
<th>Upper bound</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>3.1416</td>
<td>3.2245</td>
</tr>
<tr>
<td>1</td>
<td>3.4870</td>
<td>3.5722</td>
</tr>
<tr>
<td>2</td>
<td>3.8489</td>
<td>3.9313</td>
</tr>
<tr>
<td>3</td>
<td>4.2429</td>
<td>4.3228</td>
</tr>
<tr>
<td>4</td>
<td>4.5992</td>
<td>4.6946</td>
</tr>
<tr>
<td>5</td>
<td>5.0060</td>
<td>5.1316</td>
</tr>
<tr>
<td>6</td>
<td>5.4130</td>
<td>5.5602</td>
</tr>
<tr>
<td>7</td>
<td>5.7591</td>
<td>5.9078</td>
</tr>
<tr>
<td>8</td>
<td>6.0690</td>
<td>6.2346</td>
</tr>
<tr>
<td>9</td>
<td>0.0739</td>
<td>0.2553</td>
</tr>
<tr>
<td>10</td>
<td>0.3419</td>
<td>0.5493</td>
</tr>
<tr>
<td>11</td>
<td>0.7480</td>
<td>0.9995</td>
</tr>
<tr>
<td>12</td>
<td>1.2763</td>
<td>1.5578</td>
</tr>
<tr>
<td>13</td>
<td>1.6757</td>
<td>2.0118</td>
</tr>
<tr>
<td>14</td>
<td>1.9390</td>
<td>2.3692</td>
</tr>
<tr>
<td>15</td>
<td>2.2669</td>
<td>2.7465</td>
</tr>
<tr>
<td>16</td>
<td>2.2803</td>
<td>2.8369</td>
</tr>
<tr>
<td>17</td>
<td>2.3027</td>
<td>3.1054</td>
</tr>
<tr>
<td>18</td>
<td>2.8645</td>
<td>4.7853</td>
</tr>
<tr>
<td>19</td>
<td>2.7577</td>
<td>4.2657</td>
</tr>
<tr>
<td>20</td>
<td>2.7583</td>
<td>4.4042</td>
</tr>
<tr>
<td>21</td>
<td>2.1779</td>
<td>4.0082</td>
</tr>
<tr>
<td>22</td>
<td>2.2593</td>
<td>3.8227</td>
</tr>
<tr>
<td>23</td>
<td>2.5261</td>
<td>4.7968</td>
</tr>
<tr>
<td>24</td>
<td>3.0780</td>
<td>5.6597</td>
</tr>
<tr>
<td>25</td>
<td>3.0754</td>
<td>4.3818</td>
</tr>
<tr>
<td>26</td>
<td>3.8081</td>
<td>5.1640</td>
</tr>
<tr>
<td>27</td>
<td>3.5382</td>
<td>6.5100</td>
</tr>
<tr>
<td>28</td>
<td>2.1386</td>
<td>4.2297</td>
</tr>
<tr>
<td>29</td>
<td>2.1469</td>
<td>3.4804</td>
</tr>
<tr>
<td>30</td>
<td>2.3176</td>
<td>3.2717</td>
</tr>
<tr>
<td>31</td>
<td>2.6071</td>
<td>3.9773</td>
</tr>
<tr>
<td>32</td>
<td>2.8184</td>
<td>6.5419</td>
</tr>
<tr>
<td>33</td>
<td>3.2115</td>
<td>16.6142</td>
</tr>
<tr>
<td>34</td>
<td>5.0543</td>
<td>6.7636</td>
</tr>
<tr>
<td>35</td>
<td>5.4770</td>
<td>6.8267</td>
</tr>
<tr>
<td>36</td>
<td>5.4155</td>
<td>6.7864</td>
</tr>
<tr>
<td>37</td>
<td>5.4122</td>
<td>6.8027</td>
</tr>
<tr>
<td>38</td>
<td>5.0105</td>
<td>6.8199</td>
</tr>
<tr>
<td>39</td>
<td>5.1738</td>
<td>8.1378</td>
</tr>
<tr>
<td>40</td>
<td>0.0000</td>
<td>2.8369</td>
</tr>
</tbody>
</table>