NAG C Library Function Document

nag_tsa_spectrum_bivar_cov (g13ccc)

1 Purpose

nag_tsa_spectrum_bivar_cov (g13ccc) calculates the smoothed sample cross spectrum of a bivariate time series using one of four lag windows: rectangular, Bartlett, Tukey or Parzen.

2 Specification

void nag_tsa_spectrum_bivar_cov (Integer nxy, NagMeanOrTrend mtxy_correction, double pxy, Integer iw, Integer mw, Integer ish, Integer ic, Integer nc, double cxy[], double cyx[], Integer kc, Integer l, const double xg[], const double yg[], Complex g[], Integer *ng, NagError *fail)

3 Description

The smoothed sample cross spectrum is a complex valued function of frequency ω, $f_{xy}(\omega) = cf(\omega) + iqf(\omega)$, defined by its real part or co-spectrum

$$cf(\omega) = \frac{1}{2\pi} \sum_{k=-M+1}^{M-1} w_k C_{xy}(k+S) \cos(\omega k)$$

and imaginary part or quadrature spectrum

$$qf(\omega) = \frac{1}{2\pi} \sum_{k=-M+1}^{M-1} w_k C_{xy}(k+S) \sin(\omega k)$$

where $w_k = w_{-k}, k = 0, 1, \ldots, M - 1$, is the smoothing lag window as defined in the description of nag_tsa_spectrum_univar_cov (g13cac). The alignment shift S is recommended to be chosen as the lag k at which the cross-covariances $c_{xy}(k)$ peak, so as to minimize bias.

The results are calculated for frequency values

$$\omega_j = \frac{2\pi j}{L}, \quad j = 0, 1, \ldots, [L/2],$$

where $[\]$ denotes the integer part.

The cross-covariances $c_{xy}(k)$ may be supplied by the user, or constructed from supplied series $x_1, x_2, \ldots, x_n; y_1, y_2, \ldots, y_n$ as

$$c_{xy}(k) = \frac{1}{n} \sum_{t=1}^{n-k} x_t y_{t+k}, \quad k \geq 0$$

$$c_{xy}(k) = \frac{1}{n} \sum_{t=1-k}^{n} x_t y_{t+k} = c_{yx}(-k), \quad k < 0$$

this convolution being carried out using the finite Fourier transform.

The supplied series may be mean and trend corrected and tapered before calculation of the cross-covariances, in exactly the manner described in nag_tsa_spectrum_univar_cov (g13cac) for univariate spectrum estimation. The results are corrected for any bias due to tapering.

The bandwidth associated with the estimates is not returned. It will normally already have been calculated in previous calls of nag_tsa_spectrum_univar_cov (g13cac) for estimating the univariate spectra of y_i and x_t.

[NP3645/7]
4 References

5 Parameters
1: \(n_{xy} \) – Integer
 \(\text{Input} \)
 \(On \ entry: \) the length, \(n \), of the time series \(x \) and \(y \).
 \(Constraint: \ n_{xy} \geq 1. \)

2: \(mtxy_\text{correction} \) – NagMeanOrTrend
 \(\text{Input} \)
 \(On \ entry: \) if cross-covariances are to be calculated by the routine (\(ic = 0 \)), \(mtxy_\text{correction} \) must specify whether the data is to be initially mean or trend corrected.
 \(mtxy_\text{correction} = \text{Nag_NoCorrection} \)
 For no correction.
 \(mtxy_\text{correction} = \text{Nag_Mean} \)
 For mean correction.
 \(mtxy_\text{correction} = \text{Nag_Trend} \)
 For trend correction.
 If cross-covariances are supplied (\(ic \neq 0 \)), \(mtxy_\text{correction} \) should be set to \(\text{Nag_NoCorrection} \)
 \(Constraint: \ mtxy_\text{correction} = \text{Nag_NoCorrection}, \text{Nag_Mean} \) or \(\text{Nag_Trend} \).

3: \(pxy \) – double
 \(\text{Input} \)
 \(On \ entry: \) if cross-covariances are to be calculated by the routine (\(ic = 0 \)), \(pxy \) must specify the proportion of the data (totalled over both ends) to be initially tapered by the split cosine bell taper. A value of 0.0 implies no tapering. If cross-covariances are supplied (\(ic \neq 0 \)), \(pxy \) is not used.
 \(Constraint: \) if \(ic = 0 \), \(0.0 \leq pxy \leq 1.0. \)

4: \(iw \) – Integer
 \(\text{Input} \)
 \(On \ entry: \) the choice of lag window. \(iw = 1 \) for rectangular, 2 for Bartlett, 3 for Tukey or 4 for Parzen.
 \(Constraint: \ 1 \leq iw \leq 4. \)

5: \(mw \) – Integer
 \(\text{Input} \)
 \(On \ entry: \) the ‘cut-off’ point, \(M \), of the lag window, relative to any alignment shift that has been applied. Windowed cross covariances at lags \(-(mw + ish) \) or less, and at lags \(mw + ish \) or greater are zero.
 \(Constraints: \)
 \(mw \geq 1; \)
 \(mw + \text{abs}(ish) \leq n_{xy}. \)

6: \(ish \) – Integer
 \(\text{Input} \)
 \(On \ entry: \) the alignment shift, \(S \), between the \(x \) and \(y \) series. If \(x \) leads \(y \), the shift is positive.
 \(Constraint: \ -(mw \leq ish \leq mw). \)
7: \(\text{ic} \) – Integer
Input
On entry: indicates whether cross-covariances are to be calculated in the routine or supplied in the call to the routine.
\(\text{ic} = 0 \)
cross-covariances are to be calculated.
\(\text{ic} \neq 0 \)
cross-covariances are to be supplied.

8: \(\text{nc} \) – Integer
Input
On entry: the number of cross-covariances to be calculated in the routine or supplied in the call to the routine.
Constraint: \(mw + \text{abs(ish)} \leq \text{nc} \leq nxy \).

9: \(\text{cxy}[\text{nc}] \) – double
Input/Output
On entry: if \(\text{ic} \neq 0 \), then \(\text{cxy} \) must contain the \(\text{nc} \) cross covariances between values in the \(y \) series and earlier values in time in the \(x \) series, for lags from 0 to \((\text{nc} - 1) \). If \(\text{ic} = 0 \), \(\text{cxy} \) need not be set.
On exit: if \(\text{ic} = 0 \), \(\text{cxy} \) will contain the \(\text{nc} \) calculated cross covariances.
If \(\text{ic} \neq 0 \), the contents of \(\text{cxy} \) will be unchanged.

10: \(\text{cyx}[\text{nc}] \) – double
Input/Output
On entry: if \(\text{ic} \neq 0 \), then \(\text{cyx} \) must contain the \(\text{nc} \) cross covariances between values in the \(y \) series and later values in time in the \(x \) series, for lags from 0 to \((\text{nc} - 1) \). If \(\text{ic} = 0 \), \(\text{cyx} \) need not be set.
On exit: if \(\text{ic} = 0 \), \(\text{cyx} \) will contain the \(\text{nc} \) calculated cross covariances.
If \(\text{ic} \neq 0 \), the contents of \(\text{cyx} \) will be unchanged.

11: \(\text{kc} \) – Integer
Input
On entry: if \(\text{ic} = 0 \), \(\text{kc} \) must specify the order of the fast Fourier transform (FFT) used to calculate the cross-covariances. \(\text{kc} \) should be a product of small primes such as \(2^m \) where \(m \) is the smallest integer such that \(2^m \geq n + \text{nc} \).
If \(\text{ic} \neq 0 \), that is if covariances are supplied, then \(\text{kc} \) is not used.
Constraint: \(\text{kc} \geq nxy + \text{nc} \). The largest prime factor of \(\text{kc} \) must not exceed 19, and the total number of prime factors of \(\text{kc} \), counting repetitions, must not exceed 20. These two restrictions are imposed by \text{nag_fft_real} (c06eac) and \text{nag_fft_hermitian} (c06ebc) which perform the FFT.

12: \(\text{l} \) – Integer
Input
On entry: the frequency division, \(L \), of the spectral estimates as \(\frac{2\pi}{L} \). Therefore it is also the order of the FFT used to construct the sample spectrum from the cross-covariances. \(\text{l} \) should be a product of small primes such as \(2^m \) where \(m \) is the smallest integer such that \(2^m \geq 2M - 1 \).
Constraint: \(\text{l} \geq 2 \times \text{mw} - 1 \). The largest prime factor of \(\text{l} \) must not exceed 19, and the total number of prime factors of \(\text{l} \), counting repetitions, must not exceed 20. These two restrictions are imposed by \text{nag_fft_real} (c06eac) which performs the FFT.

13: \(\text{xg}[^{\text{dim}}] \) – double
Input/Output
Note: the dimension, \(\text{dim} \), of the array \(\text{xg} \) must be at least \(\max(\text{kc}, \text{l}) \) when \(\text{ic} = 0 \) and at least \(\text{l} \) when \(\text{ic} \neq 0 \).
On entry: if the cross-covariances are to be calculated (\(\text{ic} = 0 \)) \(\text{xg} \) must contain the \(nxy \) data points of the \(x \) series. If covariances are supplied (\(\text{ic} \neq 0 \)) \(\text{xg} \) may contain any values.
The dimension, \(\text{dim} \), of the array \(\text{yg} \) must be at least \(\max(\text{kc}, \text{l}) \) when \(\text{ic} = 0 \) and at least \(\text{l} \) when \(\text{ic} \neq 0 \).

On entry: if the cross-covariances are to be calculated (\(\text{ic} = 0 \)) \(\text{yg} \) must contain the \(\text{nxy} \) data points of the \(y \) series. If covariances are supplied (\(\text{ic} \neq 0 \)) \(\text{yg} \) may contain any values.

On exit: the complex vector that contains the \(\text{ng} \) cross spectral estimates in elements \(g[0] \) to \(g[\text{ng} - 1] \). The \(y \) series leads the \(x \) series.

On exit: the number, \([l/2] + 1 \), of complex spectral estimates.

The NAG error parameter (see the Essential Introduction).

6 Error Indicators and Warnings

<table>
<thead>
<tr>
<th>Error Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>NE_INT</td>
<td>On entry, (\text{ic} = 0) and (\text{mtxy_correction} > 2): (\text{mtxy_correction} = \langle \text{value} \rangle). On entry, (\text{ic} = 0) and (\text{mtxy_correction} < 0): (\text{mtxy_correction} = \langle \text{value} \rangle). On entry, (\text{mw} = \langle \text{value} \rangle). Constraint: (\text{mw} \geq 1). On entry, (\text{mw} = \langle \text{value} \rangle). Constraint: (\text{mw} \geq 1). On entry, (\text{iw}) is not equal to 1, 2, 3 or 4: (\text{iw} = \langle \text{value} \rangle). On entry, (\text{nxy} = \langle \text{value} \rangle). Constraint: (\text{nxy} \geq 1).</td>
</tr>
<tr>
<td>NE_INT_2</td>
<td>On entry, (\text{nc} > \text{nxy}): (\text{nc} = \langle \text{value} \rangle), (\text{nxy} = \langle \text{value} \rangle). On entry, (l < 2 \times \text{mw} - 1): (l = \langle \text{value} \rangle), (\text{mw} = \langle \text{value} \rangle).</td>
</tr>
<tr>
<td>NE_INT_3</td>
<td>On entry, (\text{nc} < \text{mw} + \text{abs(ish)}): (\text{nc} = \langle \text{value} \rangle), (\text{mw} = \langle \text{value} \rangle), (\text{ish} = \langle \text{value} \rangle). On entry, (\text{mw} + \text{abs(ish)} > \text{nxy}): (\text{mw} = \langle \text{value} \rangle), (\text{ish} = \langle \text{value} \rangle), (\text{nxy} = \langle \text{value} \rangle). On entry, (\text{ic} = 0) and (\text{kc} < \text{nxy} + \text{nc}): (\text{kc} = \langle \text{value} \rangle), (\text{nxy} = \langle \text{value} \rangle), (\text{nc} = \langle \text{value} \rangle).</td>
</tr>
<tr>
<td>NE_INT_REAL</td>
<td>On entry, (\text{ic} = 0) and (\text{pxy} > 1.0): (\text{pxy} = \langle \text{value} \rangle). On entry, (\text{ic} = 0) and (\text{pxy} < 0.0): (\text{pxy} = \langle \text{value} \rangle).</td>
</tr>
<tr>
<td>NE_PRIME_FACTOR</td>
<td>(l) has a prime factor exceeding 19, or more than 20 prime factors (counting repetitions): (l = \langle \text{value} \rangle). (\text{kc}) has a prime factor exceeding 19, or more than 20 prime factors (counting repetitions): (\text{kc} = \langle \text{value} \rangle).</td>
</tr>
</tbody>
</table>
NE_ALLOC_FAIL
Memory allocation failed.

NE_BAD_PARAM
On entry, parameter (value) had an illegal value.

NE_INTERNAL_ERROR
An internal error has occurred in this function. Check the function call and any array sizes. If the call is correct then please consult NAG for assistance.

7 Accuracy
The FFT is a numerically stable process, and any errors introduced during the computation will normally be insignificant compared with uncertainty in the data.

8 Further Comments

nag_tsa_spectrum_bivar_cov (g13ccc) carries out two FFTs of length kc by calls to nag_fft_real (c06eac) and nag_fft_hermitian (c06ebc) to calculate the sample cross-covariances and one FFT of length L to calculate the sample spectrum. The timing of nag_tsa_spectrum_bivar_cov (g13ccc) is therefore dependent on the choice of these values. The time taken for an FFT of length n is approximately proportional to n log n (but see Section 8 of the document for nag_fft_real (c06eac) for further details).

9 Example
The example program reads 2 time series of length 296. It then selects mean correction, a 10% tapering proportion, the Parzen smoothing window and a cut-off point of 35 for the lag window. The alignment shift is set to 3 and 50 cross-covariances are chosen to be calculated. The program then calls nag_tsa_spectrum_bivar_cov (g13ccc) to calculate the cross spectrum and then prints the cross-covariances and cross spectrum.

9.1 Program Text
/* nag_tsa_spectrum_bivar_cov (g13ccc) Example Program. *
 * Copyright 2002 Numerical Algorithms Group.
 * Mark 7, 2002.
 */
#include <stdio.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagg13.h>

int main(void)
{
 /* Scalars */
 double pxy;
 Integer exit_status, i, ic, ii, ish, iw, kc, lf,
 mw, nc, ng, nxy, nxyg;

 /* Arrays */
 double *cxy = 0, *cyx = 0, *xg = 0, *yg = 0;
 Complex *g = 0;

 NagMeanOrTrend mtxy;
 NagError fail;
 INIT_FALL(fail);
exit_status = 0;
Vprintf("g13ccc Example Program Results\n");
/* Skip heading in data file */
Vscanf("%*[\n] ");
Vscanf("%ld%ld%ld*[\n] ", &nxy, &nc, &ic);
if (nxy > 0 && nc > 0)
{
 /* Set parameters for call to g13ccc */
 /* Mean correction and 10 percent taper */
 mtxy = Nag_Mean;
 pxy = 0.1;

 /* Parzen window and zero covariance at lag 35 */
 iw = 4;
 mw = 35;

 /* Alignment shift of 3, 50 covariances to be calculated */
 ish = 3;
 kc = 350;
 lf = 80;

 if (ic == 0)
 nxyg = MAX(kc, lf);
 else
 nxyg = lf;

 /* Allocate arrays xg, yg, cxy and cyx */
 if (!(xg = NAG_ALLOC(nxyg, double)) ||
 !(yg = NAG_ALLOC(nxyg, double)) ||
 !(cxy = NAG_ALLOC(nc, double)) ||
 !(cyx = NAG_ALLOC(nc, double)) ||
 !(g = NAG_ALLOC((lf/2)+1, Complex)))
 {
 Vprintf("Allocation failure\n");
 exit_status = -1;
 goto END;
 }

 if (ic == 0)
 {
 for (i = 1; i <= nxy; ++i)
 Vscanf("%lf", &xg[i-1]);
 Vscanf("%*[\n] ");
 for (i = 1; i <= nxy; ++i)
 Vscanf("%lf", &yg[i-1]);
 Vscanf("%*[\n] ");
 }
 else
 {
 for (i = 1; i <= nc; ++i)
 Vscanf("%lf", &cxy[i-1]);
 Vscanf("%*[\n] ");
 for (i = 1; i <= nc; ++i)
 Vscanf("%lf", &cyx[i-1]);
 Vscanf("%*[\n] ");
 }

g13ccc(nxy, mtxy, pxy, iw, mw, ish, ic, nc, cxy, cyx, kc, lf,
 xg, yg, g, &ng, &fail);
if (fail.code != NE_NOERROR)
 {
 Vprintf("Error from g13ccc.\n", fail.message);
 exit_status = 1;
 goto END;
 }

Vprintf("\n");
Vprintf(" Returned cross covariances\n");
Vprintf("\n");
Vprintf(" Lag XY YX Lag XY YX Lag XY YX\n");
for (i = 1; i <= nc; i += 3)
{
 for (ii = i; ii <= MIN(i+2, nc); ++ii)
 Vprintf("%4ld%9.4f%9.4f ", ii-1, cxy[ii-1], cyx[ii-1]);
 Vprintf("\n");
}
Vprintf("\n");
Vprintf(" Returned sample spectrum\n");
Vprintf("\n");
Vprintf(" Real Imaginary Real Imaginary ");
Vprintf(" Lag part part Lag part part Lag\n");
for (i = 1; i <= ng; i += 3)
{
 for (ii = i; ii <= MIN(i+2, ng); ++ii)
 Vprintf("%4ld%9.4f%9.4f ", ii-1, g[ii-1].re, g[ii-1].im);
 Vprintf("\n");
}

END:
if (cxy) NAG_FREE(cxy);
if (cyx) NAG_FREE(cyx);
if (xg) NAG_FREE(xg);
if (yg) NAG_FREE(yg);
if (g) NAG_FREE(g);
return exit_status;

9.2 Program Data

g13ccc Example Program Data

296 50 0
-0.109 0.000 0.178 0.339 0.373 0.441 0.461 0.348
0.127 -0.180 -0.588 -1.055 -1.421 -1.520 -1.302 -0.814
-0.475 -0.193 0.088 0.435 0.771 0.866 0.875 0.891
0.987 1.263 1.775 1.976 1.934 1.866 1.832 1.767
1.608 1.265 0.790 0.360 0.115 0.088 0.331 0.645
0.980 1.409 2.670 2.834 2.812 2.483 1.929 1.485
1.214 1.239 1.608 1.905 2.023 1.815 0.535 0.122
0.009 0.164 0.671 1.019 1.146 1.155 1.112 1.121
1.223 1.257 1.157 0.913 0.620 0.255 -0.280 -1.080
-1.551 -1.799 -1.825 -1.456 -0.944 -0.570 -0.431 -0.577
-0.960 -1.616 -1.875 -1.891 -1.746 -1.474 -1.201 -0.927
-0.524 0.040 0.788 0.943 0.930 1.006 1.137 1.198
1.054 0.595 -0.080 -0.314 -0.288 -0.153 -0.109 -0.187
-0.255 -0.299 -0.007 0.254 0.330 0.102 -0.423 -1.139
-2.275 -2.594 -2.716 -2.510 -1.790 -1.346 -1.081 -0.910
-0.876 -0.885 -0.800 -0.544 -0.416 -0.271 0.000 0.403
0.841 1.285 1.607 1.746 1.683 1.485 0.993 0.648
0.577 0.577 0.632 0.747 0.999 0.993 0.968 0.790
0.399 -0.161 -0.553 -0.603 -0.424 -0.194 -0.049 0.060
0.161 0.301 0.517 0.566 0.560 0.573 0.592 0.671
0.933 1.337 1.460 1.353 0.772 0.218 -0.237 -0.714
-1.099 -2.269 -1.175 -0.676 0.033 0.556 0.643 0.484
0.109 -0.310 -0.697 -1.047 -1.218 -1.183 -0.873 -0.336
0.063 0.084 0.000 0.001 0.209 0.556 0.782 0.858
0.918 0.862 0.416 -0.336 -0.959 -1.813 -2.378 -2.499
-2.473 -2.330 -2.053 -1.739 -1.261 -0.569 -0.137 -0.024
-0.050 -0.135 -0.276 -0.534 -0.871 -1.243 -1.439 -1.422
-1.175 -0.813 -0.634 -0.582 -0.625 -0.713 -0.848 -1.039
-1.346 -1.628 -1.619 -1.149 -0.488 -0.160 -0.007 -0.092
-0.620 -1.086 -1.525 -1.858 -2.029 -2.024 -1.961 -1.952
9.3 Program Results

g13ccc Example Program Results

Returned cross covariances

<table>
<thead>
<tr>
<th>Lag</th>
<th>XY</th>
<th>YX</th>
<th>Lag</th>
<th>XY</th>
<th>YX</th>
<th>Lag</th>
<th>XY</th>
<th>YX</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-1.6700</td>
<td>-1.6700</td>
<td>1</td>
<td>-2.0581</td>
<td>-1.3606</td>
<td>2</td>
<td>-2.4859</td>
<td>-1.1383</td>
</tr>
<tr>
<td>3</td>
<td>-2.8793</td>
<td>-0.9926</td>
<td>4</td>
<td>-3.1473</td>
<td>-0.9009</td>
<td>5</td>
<td>-3.2239</td>
<td>-0.8382</td>
</tr>
<tr>
<td>6</td>
<td>-3.0929</td>
<td>-0.7804</td>
<td>7</td>
<td>-2.7974</td>
<td>-0.7074</td>
<td>8</td>
<td>-2.4145</td>
<td>-0.6147</td>
</tr>
<tr>
<td>9</td>
<td>-2.0237</td>
<td>-0.5080</td>
<td>10</td>
<td>-1.6802</td>
<td>-0.4032</td>
<td>11</td>
<td>-1.4065</td>
<td>-0.3159</td>
</tr>
<tr>
<td>12</td>
<td>-1.2049</td>
<td>-0.2554</td>
<td>13</td>
<td>-1.0655</td>
<td>-0.2250</td>
<td>14</td>
<td>-0.9726</td>
<td>-0.2238</td>
</tr>
<tr>
<td>15</td>
<td>-0.9117</td>
<td>-0.2454</td>
<td>16</td>
<td>-0.8658</td>
<td>-0.2784</td>
<td>17</td>
<td>-0.8180</td>
<td>-0.3081</td>
</tr>
<tr>
<td>18</td>
<td>-0.7563</td>
<td>-0.3257</td>
<td>19</td>
<td>-0.6750</td>
<td>-0.3315</td>
<td>20</td>
<td>-0.5754</td>
<td>-0.3321</td>
</tr>
<tr>
<td>21</td>
<td>-0.4701</td>
<td>-0.3308</td>
<td>22</td>
<td>-0.3738</td>
<td>-0.3312</td>
<td>23</td>
<td>-0.3023</td>
<td>-0.3332</td>
</tr>
<tr>
<td>24</td>
<td>-0.2665</td>
<td>-0.3384</td>
<td>25</td>
<td>-0.2645</td>
<td>-0.3506</td>
<td>26</td>
<td>-0.2847</td>
<td>-0.3727</td>
</tr>
<tr>
<td>27</td>
<td>-0.3113</td>
<td>-0.3992</td>
<td>28</td>
<td>-0.3263</td>
<td>-0.4152</td>
<td>29</td>
<td>-0.3271</td>
<td>-0.4044</td>
</tr>
<tr>
<td>30</td>
<td>-0.3119</td>
<td>-0.3621</td>
<td>31</td>
<td>-0.2837</td>
<td>-0.2919</td>
<td>32</td>
<td>-0.2568</td>
<td>-0.2054</td>
</tr>
<tr>
<td>33</td>
<td>-0.2427</td>
<td>-0.1189</td>
<td>34</td>
<td>-0.2490</td>
<td>-0.0414</td>
<td>35</td>
<td>-0.2774</td>
<td>0.0227</td>
</tr>
<tr>
<td>36</td>
<td>-0.3218</td>
<td>0.0697</td>
<td>37</td>
<td>-0.3705</td>
<td>0.1039</td>
<td>38</td>
<td>-0.4083</td>
<td>0.1356</td>
</tr>
<tr>
<td>39</td>
<td>-0.4197</td>
<td>0.1805</td>
<td>40</td>
<td>-0.3920</td>
<td>0.2460</td>
<td>41</td>
<td>-0.3241</td>
<td>0.3319</td>
</tr>
<tr>
<td>42</td>
<td>-0.2273</td>
<td>0.4325</td>
<td>43</td>
<td>-0.1216</td>
<td>0.5331</td>
<td>44</td>
<td>-0.0245</td>
<td>0.6199</td>
</tr>
<tr>
<td>45</td>
<td>0.0528</td>
<td>0.6875</td>
<td>46</td>
<td>0.1074</td>
<td>0.7329</td>
<td>47</td>
<td>0.1448</td>
<td>0.7550</td>
</tr>
<tr>
<td>48</td>
<td>0.1713</td>
<td>0.7544</td>
<td>49</td>
<td>0.1943</td>
<td>0.7349</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Returned sample spectrum

<table>
<thead>
<tr>
<th>Lag</th>
<th>Real</th>
<th>Imaginary</th>
<th>Real</th>
<th>Imaginary</th>
<th>Real</th>
<th>Imaginary</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-6.5500</td>
<td>0.0000</td>
<td>1</td>
<td>-5.4267</td>
<td>-1.9842</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>-1.6249</td>
<td>-2.3998</td>
<td>4</td>
<td>-2.1020</td>
<td>-1.7520</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>0.6063</td>
<td>-0.7420</td>
<td>7</td>
<td>0.6178</td>
<td>-0.3586</td>
<td>8</td>
</tr>
<tr>
<td>9</td>
<td>0.2422</td>
<td>0.0061</td>
<td>10</td>
<td>0.1233</td>
<td>0.0409</td>
<td>11</td>
</tr>
<tr>
<td>12</td>
<td>0.0174</td>
<td>0.0452</td>
<td>13</td>
<td>-0.0008</td>
<td>0.0289</td>
<td>14</td>
</tr>
<tr>
<td>15</td>
<td>-0.0051</td>
<td>0.0884</td>
<td>16</td>
<td>-0.0027</td>
<td>0.0040</td>
<td>17</td>
</tr>
<tr>
<td>18</td>
<td>-0.0006</td>
<td>0.0006</td>
<td>19</td>
<td>-0.0005</td>
<td>0.0003</td>
<td>20</td>
</tr>
<tr>
<td>21</td>
<td>-0.0003</td>
<td>0.0004</td>
<td>22</td>
<td>-0.0003</td>
<td>0.0003</td>
<td>23</td>
</tr>
<tr>
<td>24</td>
<td>-0.0004</td>
<td>0.0001</td>
<td>25</td>
<td>-0.0004</td>
<td>-0.0000</td>
<td>26</td>
</tr>
<tr>
<td>27</td>
<td>-0.0002</td>
<td>-0.0001</td>
<td>28</td>
<td>-0.0001</td>
<td>0.0001</td>
<td>29</td>
</tr>
<tr>
<td>30</td>
<td>-0.0003</td>
<td>0.0002</td>
<td>31</td>
<td>-0.0002</td>
<td>0.0001</td>
<td>32</td>
</tr>
<tr>
<td>33</td>
<td>-0.0000</td>
<td>-0.0000</td>
<td>34</td>
<td>0.0001</td>
<td>-0.0001</td>
<td>35</td>
</tr>
<tr>
<td>36</td>
<td>0.0001</td>
<td>-0.0001</td>
<td>37</td>
<td>-0.0001</td>
<td>-0.0001</td>
<td>38</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>0.0001</td>
<td>-0.0001</td>
<td>40</td>
<td>0.0001</td>
<td>0.0000</td>
<td></td>
</tr>
</tbody>
</table>