3.1. The Multi-input Model

The output series \(y_t \) for \(t = 1, 2, \ldots, n \), is assumed to be the sum of (unobserved) components \(z_{i,t} \) which are due respectively to the inputs \(x_{i,t} \), for \(i = 1, 2, \ldots, m \).

Thus \(y_t = z_{1,t} + \ldots + z_{m,t} + n_t \) where \(n_t \) is the error, or output noise component.

A typical component \(z_i \) may be either:

(a) A simple regression component, \(z_i = \omega x_i \) (here \(x_i \) is called a simple input) or

(b) A transfer function model component which allows for the effect of lagged values of the variable, related to \(x_t \) by

\[
z_i = \delta_1 z_{i-1} + \delta_2 z_{i-2} + \ldots + \delta_p z_{i-p} + \omega_0 x_{t-b} - \omega_1 x_{t-b-1} - \ldots - \omega_q x_{t-b-q}.
\]

The noise \(n_t \) is assumed to follow a (possibly seasonal) ARIMA model, i.e., may be represented in terms of an uncorrelated series, \(a_t \), by the hierarchy of equations:

(c) \(\nabla^d \nabla_s^D a_t = c + w_t \)

(d) \(w_t = \Phi_1 w_{t-s} + \Phi_2 w_{t-2s} + \ldots + \Phi_p w_{t-ps} + e_t - \Theta_1 e_{t-s} - \Theta_2 e_{t-2s} - \ldots - \Theta_Q e_{t-Qs} \)

(e) \(e_t = \phi_1 e_{t-1} + \phi_2 e_{t-2} + \ldots + \phi_p e_{t-p} + a_t - \theta_1 a_{t-1} - \theta_2 a_{t-2} - \ldots - \theta_q a_{t-q} \)

Note: the orders \(p, q \) appearing in each of the transfer function models and the ARIMA model are not necessarily the same; \(\nabla^d \nabla_s^D n_t \) is the result of applying non-seasonal differencing of order \(d \) and seasonal differencing of seasonality \(s \) and order \(D \) to the series \(n_t \), the differenced series is then of length \(N = n - d - s \times D \); the constant term parameter \(c \) may optionally be held fixed at its initial value (usually, but not necessarily zero) rather than being estimated.

For the purpose of defining an estimation criterion it is assumed that the series \(a_t \) is a sequence of independent Normal variates having mean 0 and variance \(\sigma_a^2 \). An allowance has to be made for the effects of unobserved data prior to the observation period. For the noise component an allowance is always made using a form of backforecasting.

For each transfer function input, the user has to decide what values are to be assumed for the pre-period terms \(z_0, z_{-1}, \ldots, z_{1-p} \) and \(x_0, x_{-1}, \ldots, x_{1-b-q} \) which are in theory necessary to re-create the component series \(z_1, z_2, \ldots, z_n \), during the estimation procedure.

The first choice is to assume that all these values are zero. In this case in order to avoid undesirable transient distortion of the early values \(z_1, z_2, \ldots \), the user is advised first to correct the input series

```c
#include <nag.h>
#include <nagg13.h>

void nag_tsa_multi_inp_model_estim(Nag_ArimaOrder *arimav, Integer nseries,
  Nag_TransfOrder *transfv, double para[], Integer npara,
  Integer nxy, double xxy[], Integer tdxy, double sd[],
  double *rss, double *objf, double *df, Nag_G13_Opt *options,
  NagError *fail)
```
x_t by subtracting from all the terms a suitable constant to make the early values x_1, x_2, \ldots, close to zero. The series mean \bar{x} is one possibility, but for a series with strong trend, the constant might be simply x_1.

The second choice is to treat the unknown pre-period terms as nuisance parameters and estimate them along with the other parameters. This choice should be used with caution. For example, if $p = 1$ and $b = q = 0$, it is equivalent to fitting to the data a decaying geometric curve of the form δ^t, for $t = 1, 2, 3, \ldots$, along with the other inputs, this being the form of the transient. If the output y_t contains a strong trend of this form, which is not otherwise represented in the model, it will have a tendency to influence the estimate of δ away from the value appropriate to the transfer function model.

In most applications the first choice should be adequate, with the option possibly being used as a refinement at the end of the modelling process. The number of nuisance parameters is then $\max(p, b + q)$, with a corresponding loss of degrees of freedom in the residuals. If the user aligns the input x_t with the output by using in its place the shifted series x_{t-b}, then setting $b = 0$ in the transfer function model, there is some improvement in efficiency. On some occasions when the model contains two or more inputs, each with estimation of pre-period nuisance parameters, these parameters may be co-linear and lead to failure of the routine. The option must then be ‘switched off’ for one or more inputs.

3.2 The Estimation Criterion

This is a measure of how well a proposed set of parameters in the transfer function and noise ARIMA models, matches the data. The estimation routine searches for parameter values which minimize this criterion. For a proposed set of parameter values it is derived by calculating:

(i) the components $z_{1,t}, z_{2,t}, \ldots, z_{m,t}$ as the responses to the input series $x_{1,t}, x_{2,t}, \ldots, x_{m,t}$ using the equations (a) or (b) above,

(ii) the discrepancy between the output and the sum of these components, as the noise

$$n_t = y_t - (z_{1,t} + z_{2,t} + \ldots + z_{m,t}),$$

(iii) the residual series a_t from n_t by reversing the recursive equations (c), (d) and (e) above.

This last step again requires treatment of the effect of unknown pre-period values of n_t and other terms in the equations regenerating a_t. One approach is to use a sum of squares function as the estimation criteria, which is equivalent to taking the infinite set of past values $n_0, n_{-1}, n_{-2}, \ldots$, as (linear) nuisance parameters. There is no loss of degrees of freedom however, because the sum of squares function S may be expressed as including the corresponding set of past residuals – see Box and Jenkins (1976) page 273, who prove that

$$S = \sum_{-\infty}^{n} a_t^2.$$

The function $D = S$ is the first of the three possible criteria, and is quite adequate for moderate to long series with no seasonal parameters. The second is the exact likelihood criterion which considers the past set $n_0, n_{-1}, n_{-2}, \ldots$, not as simple nuisance parameters, but as unobserved random variables with known distribution. Calculation of the likelihood of the observed set n_1, n_2, \ldots, n_n requires theoretical integration over the range of the past set. Fortunately this yields a criterion of the form $D = M \times S$ (whose minimization is equivalent to maximizing the exact likelihood of the data), where S is exactly as before, and the multiplier M is a function calculated from the ARIMA model parameters. The value of M is always ≥ 1, and M tends to 1 for any fixed parameter set as the sample size n tends to ∞. There is a moderate computational overhead in using this option, but its use avoids appreciable bias in the ARIMA model parameters and yields a better conditioned estimation problem.

The third criterion of marginal likelihood treats the coefficients of the simple inputs in a manner analogous to that given to the past set $n_0, n_{-1}, n_{-2}, \ldots$. These coefficients, together with the constant term c used to represent the mean of w_t, are in effect treated as random variables with
highly dispersed distributions. This leads to the criterion \(D = M \times S \) again, but with a different value of \(M \) which now depends on the simple input series values \(x_t \). In the presence of a moderate to large number of simple inputs, the marginal likelihood criterion can counteract bias in the ARIMA model parameters which is caused by estimation of the simple inputs. This is particularly important in relatively short series.

\[\text{nag} _\text{isa} _\text{multi} _\text{inp} _\text{multim} _\text{estim} \text{ can be used with no input series present, to estimate a univariate ARIMA model for the ouput alone. The marginal likelihood criterion is then distinct from exact likelihood only if a constant term is being estimated in the model, because this is treated as an implicit simple input.} \]

3.3 The Estimation Procedure

This is the minimization of the estimation criterion or objective function \(D \) (for deviance). The routine uses an extension of the algorithm of Marquardt (1963). The step size in the minimization is inversely related to a parameter \(\alpha \), which is increased or decreased by a factor \(\beta \) at successive iterations, depending on the progress of the minimization. Convergence is deemed to have occurred if the fractional reduction of \(D \) in successive iterations is less than a value \(\gamma \), while \(\alpha < 1 \).

Certain model parameters (in fact all excluding the \(\omega \)'s) are subject to stability constraints which are checked throughout to within a specified tolerance multiple \(\delta \) of machine accuracy. Using the least-squares criterion, the minimization may halt prematurely when some parameters ‘stick’ at a constraint boundary. This can happen particularly with short seasonal series (with a small number of whole seasons). It will not happen using the exact likelihood criterion, although convergence to a point on the boundary may sometimes be rather slow, because the criterion function may be very flat in such a region. There is also a smaller risk of a premature halt at a constraint boundary when marginal likelihood is used.

A positive, or zero number of iterations can be specified. In either case, the value \(D \) of the objective function at iteration zero is computed at the initial parameter values, except for the estimation of any pre-period terms for the input series, backforecasts for the noise series, and the coefficients of any simple inputs, and the constant term (unless this is held fixed).

At any later iteration, the value of \(D \) is computed after re-estimation of the backforecasts to their optimal values, corresponding to the model parameters presented at that iteration. This is not true for any pre-period terms for the input series which, although they are updated from the previous iteration, may not be precisely optimal for the parameter values presented, unless convergence of those parameters has occurred. However, in the case of marginal likelihood being specified, the coefficients of the simple inputs and the constant term are also re-estimated together with the backforecasts at each iteration, to values which are optimal for the other parameter values presented.

3.4. Further Results

The residual variance is taken as \(\text{erv} = \frac{S}{df} \) where \(df = N - (\text{total number of parameters estimated}) \), is the residual degrees of freedom (for definition of \(S \) see Section 3.2 and for definition of \(N \) see Section 3.1). The pre-period nuisance parameters for the input series are included in the reduction of \(df \), as is the constant if it is estimated.

The covariance matrix of the vector of model parameter estimates is given by

\[\text{erv} \times H^{-1} \]

where \(H \) is the linearised least-squares matrix taken from the final iteration of the algorithm of Marquardt. From this expression are derived the vector of standard deviations, and the correlation matrix of parameter estimates. These are approximations which are only valid asymptotically, and must be treated with great caution when the parameter estimates are close to their constraint boundaries.

The residual series \(a_t \) is available upon completion of the iterations over the range \(t = 1 + d + s \times D, \ldots, n \) corresponding to the differenced noise series \(w_t \).

Because of the algorithm used for backforecasting, these are only true residuals for \(t \geq 1 + q + s \times Q - p - s \times P - d - s \times D \), provided this is positive. Estimation of pre-period terms for the inputs will also tend to reduce the magnitude of the early residuals, sometimes severely.

The model component series \(z_{1,t}, \ldots, z_{m,t} \) and \(n_t \) may optionally be returned in order to assess the effects of the various inputs on the output.
4. Parameters

arimav
Input: Pointer to structure of type Nag_ArimaOrder with the following members:

\[p \quad \text{Integer}\]
\[d \quad \text{Integer}\]
\[q \quad \text{Integer}\]
\[bigp \quad \text{Integer}\]
\[bigd \quad \text{Integer}\]
\[bigq \quad \text{Integer}\]
\[s \quad \text{Integer}\]

These seven members of arimav must specify the orders vector \((p,d,q,P,D,Q,s)\), respectively, of the ARIMA model for the output noise component.

\(p, q, P\) and \(Q\) refer, respectively, to the number of autoregressive \((\phi)\), moving average \((\theta)\), seasonal autoregressive \((\Phi)\) and seasonal moving average \((\Theta)\) parameters.

\(d, D\) and \(s\) refer, respectively, to the order of non-seasonal differencing, the order of seasonal differencing and the seasonal period.

nseries
Input: the total number of input and output series. There may be any number of input series (including none), but always one output series.

Constraints: \(nseries > 1\) if there are no parameters in the model (that is \(p = q = P = Q = 0\) and \(\text{options.cfixed} = \text{TRUE}\)), \(nseries \geq 1\) otherwise.

transfv
Input: Pointer to structure of type Nag_TransfOrder with the following members:

\[b \quad \text{Integer *}\]
\[q \quad \text{Integer *}\]
\[p \quad \text{Integer *}\]
\[r \quad \text{Integer *}\]

Before use these member pointers must be allocated memory by calling nag_tsa_transorders (g13byc) which allocates \(nseries - 1\) elements to each pointer.

The memory allocated to these pointers must be given the transfer function model orders \(b, q\) and \(p\) of each of the input series. The order parameters for input series \(i\) are held in the \(i\)th element of the allocated memory for each pointer. \(b[i-1]\) holds the value \(b_i\), \(q[i-1]\) holds the value \(q_i\) and \(p[i-1]\) holds the value \(p_i\).

For a simple input, \(b_i = q_i = p_i = 0\).

\(r[i-1]\) holds the value \(r_i\), where \(r_i = 1\) for a simple input, \(r_i = 2\) for a transfer function input for which no allowance is to be made for pre-observation period effects, and \(r_i = 3\) for a transfer function input for which pre-observation period effects will be treated by estimation of appropriate nuisance parameters.

When \(r_i = 1\), any non-zero contents of the \(i\)th element of \(b, q\) and \(p\) are ignored.

Constraint: \(r[i-1] = 1, 2\) or \(3\), for \(i = 1, 2, \ldots, nseries - 1\).

The memory allocated to the members of transfv must be freed by a call to nag_tsa_trans_free (g13bzc).

para[\text{npara}]
Input: initial values of the multi-input model parameters. These are in order, firstly the ARIMA model parameters: \(p\) values of \(\phi\) parameters, \(q\) values of \(\theta\) parameters, \(P\) values of \(\Phi\) parameters and \(Q\) values of \(\Theta\) parameters. These are followed by initial values of the transfer function model parameters \(\omega_0, \omega_1, \ldots, \omega_{q_1}, \delta_1, \delta_2, \ldots, \delta_{p_1}\) for the first of any input series and similarly for each subsequent input series. The final component of para is the initial value of the constant \(c\), whether it is fixed or is to be estimated.

Output: the latest values of the estimates of these parameters.

\text{npara}
Input: the exact number of \(\phi, \theta, \Phi, \Theta, \omega, \delta\) and \(c\) parameters.

Constraint: \(\text{npara} = p + q + P + Q + \text{nseries} + \sum (p_i + q_i)\), the summation being over all the input series. \((c\) must be included, whether fixed or estimated.)
nxx
Input: the (common) length of the original, undifferenced input and output time series.

xxy[nxx][tdxxy]
Input: the columns of xxy must contain the nxx original, undifferenced values of each of the input series, \(x_t \), and the output series, \(y_t \), in that order.

tdxxy
Input: the last dimension of array xxy as declared in the function from which nag_tsa_multi_inp_model_estim is called.
Constraint: \(tdxxy \geq nseries \).

sd[para]
Output: the para values of the standard deviations corresponding to each of the parameters in para. When the constant is fixed its standard deviation is returned as zero. When the values of para are valid, the values of sd are usually also valid unless the function fails to invert the second derivative matrix in which case fail.code will have an exit value of NE_MAT_NOT_POS_DEF.

rss
Output: the residual sum of squares, \(S \), at the latest set of valid parameter estimates.

objf
Output: the objective function, \(D \), at the latest set of valid parameter estimates.

df
Output: the degrees of freedom associated with \(S \).

options
Input/Output: a pointer to a structure of type Nag_G13_Opt whose members are optional parameters for nag_tsa_multi_inp_model_estim. If the optional parameters are not required, then the null pointer, G13_DEFAULT, can be used in the function call to nag_tsa_multi_inp_model_estim. Details of the optional parameters and their types are given below in Section 7.

fail
The NAG error parameter, see the Essential Introduction to the NAG C Library.
Users are recommended to declare and initialize fail and set fail.print = TRUE for this function.

5. Error Indications and Warnings
A list of possible error exits from nag_tsa_multi_inp_model_estim is given in Section 8.

6. Example 1
This example illustrates the use of the default option G13_DEFAULT in a call to nag_tsa_multi_inp_model_estim. An example showing the use of optional parameters is given in Section 11. There is one example program file, the main program of which calls both examples. The main program is given below.

```c
/* <nag_tsa_multi_inp_model_estim>(g13bec) Example Program. *
 * Copyright 1991 Numerical Algorithms Group. *
 * Mark 2, 1991. *
 */

#include <nag.h>
#include <stdio.h>
#include <nag_string.h>
#include <nag_stdlib.h>
#include <nagg13.h>

#ifdef NAG_PROTO
```
static void ex1(void);
static void ex2(void);
#else
static void ex1();
static void ex2();
#endif
#define NSERMX 2
#define NPMAX 10
#define NXXYM 50
#define TDXXY NSERMX

main()
{
/* Two examples are called, ex1() which uses the
 * default settings to solve the problem and
 * ex2() which solves the same problem with
 * some optional parameters set by the user. */
Vprintf("g13bec Example Program Results.\n");
Vscanf("%*[^\n]"); /* Skip heading in data file */
ex1();
ex2();
exit(EXIT_SUCCESS);
}

6.1. Example 1

This example illustrates the use of the default option G13_DEFAULT in a call to
nag_tsa_multi_inp_model_estim.

The data in the example relate to 40 observations of an output time series and of a single input time
series. The noise series has one autoregressive (\(\phi \)) and one seasonal moving average (\(\Theta \)) parameter
(both of which are initially set to zero) for which the seasonal period is 4. The input series is
defined by orders \(b_1 = 1 \), \(q_1 = 0 \), \(p_1 = 1 \), \(r_1 = 3 \), so that it has one \(\omega \) (initially set to 2.0) and one \(\delta \) (initially set to 0.5), and allows for pre-observation period effects.

After the successful call to nag_tsa_multi_inp_model_estim, the following are computed and printed
out: the number of full iterations required to obtain satisfactory results, the final values of the para
parameters and their standard errors sd, the residual sum of squares rss, the objective function objf
and the degrees of freedom.

6.1.1. Program Text

static void ex1()
{
 double df, objf, rss;
 Integer i, j, npara, nseries, nxyy, inser;
 double para[NPMAX], sd[NPMAX], xxyy[NXXYM][NSERMX];
 Nag_ArimaOrder arimav;
 Nag_TransfOrder transfv;
 NagError fail;
 Vprintf("g13bec example 1: default settings\n");
 INIT_FAIL(fail);
 /* Skip heading in data file */
 Vscanf("%*[^\n]");
 Vscanf("%ld%ld", &nxxy, &nseries);
 if (nxxy>0 && nxxy<=NXXYM && nseries>0 && nseries<=NSERMX)
 {
 /* Allocate memory to the arrays in structure transfv containing
 * the transfer function model orders of the input series.
 * The following statements define the orders of the input series.
 */
 g13byc(nseries, &transfv, NAGERR_DEFAULT);
 /* Read the orders vector of the ARIMA model for the output noise
* component into structure arimav.
*/
Vscanf("%ld%ld%ld%ld%ld%ld%ld", &arimav.p, &arimav.d, &arimav.q,
 &arimav.bigp, &arimav.bigd, &arimav.bigq, &arimav.s);

/*
* Read the transfer function model orders of the input series into
* structure transfv.
*/
inser = nseries - 1;
for (j=0; j<inser; ++j)
 Vscanf("%ld", &transfv.b[j]);
for (j=0; j<inser; ++j)
 Vscanf("%ld", &transfv.q[j]);
for (j=0; j<inser; ++j)
 Vscanf("%ld", &transfv.p[j]);
for (j=0; j<inser; ++j)
 Vscanf("%ld", &transfv.r[j]);

npara = 0;
for (i=0; i<ninser; ++i)
 npara = npara + transfv.q[i] + transfv.p[i];
npara = npara + arimav.p + arimav.q + arimav.bigp + arimav.bigq
 + nseries;
if (npara<=NPMAX)
{
 for (i=0; i<npara; ++i)
 Vscanf("%lf", ¶[i]);
 for (i=0; i<nxxy; ++i)
 for (j=0; j<nseries; ++j)
 Vscanf("%lf", &xxy[i][j]);
 fail.print = TRUE;
 g13bec(&arimav, nseries, &transfv, para, npara, nxxy, (double *)xxy,
 (Integer)TDXXY, sd, &rss, &objf, &df, G13_DEFAULT,
 &fail);
}
else
{
 Vfprintf(stderr, "npara is out of range: npara = %-3ld\n", npara);
 g13bzc(&transfv);
 exit(EXIT_FAILURE);
}
else
{
 if (nxxy<=0 || nxxy>NXXYMX || nseries<=0 || nseries>NSERMX)
 Vfprintf(stderr, "One or both of nxxy and nseries are out of range:\n nxxy = %-3ld while nseries = %-3ld\n", nxxy, nseries);
 exit(EXIT_FAILURE);
 }
g13bzc(&transfv);
 if (fail.code!=NE_NOERROR) exit(EXIT_FAILURE);
}

6.1.2. Program Data

g13bec Example Program Data

Example 1 Data

<table>
<thead>
<tr>
<th>Example 1 Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>40 2</td>
</tr>
<tr>
<td>1 0 0 0 0 1 4</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>0.0</td>
</tr>
<tr>
<td>0.0</td>
</tr>
<tr>
<td>2.0</td>
</tr>
<tr>
<td>0.5</td>
</tr>
<tr>
<td>0.0</td>
</tr>
<tr>
<td>8.075</td>
</tr>
<tr>
<td>105.0</td>
</tr>
</tbody>
</table>
6.1.3. Program Results

g13bec Example Program Results.

g13bec example 1: default settings

Parameters to g13bec

nseries...................... 2

criteria............... Nag_Exact
alpha................... 1.00e-02
beta.................... 1.00e+01
cfixed..................... FALSE
delta................... 1.00e+03
gamma................... 1.00e-07
print_level............. Nag_Soln
outfile................ stdout

The number of iterations carried out is 14

The final values of the parameters and their standard deviations are

<table>
<thead>
<tr>
<th>i</th>
<th>para[i]</th>
<th>sd</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.338984</td>
<td>0.167014</td>
</tr>
<tr>
<td>2</td>
<td>-0.232979</td>
<td>0.179852</td>
</tr>
<tr>
<td>3</td>
<td>8.990008</td>
<td>0.924438</td>
</tr>
<tr>
<td>4</td>
<td>0.662777</td>
<td>0.057582</td>
</tr>
<tr>
<td>5</td>
<td>-77.887390</td>
<td>32.513251</td>
</tr>
</tbody>
</table>
The residual sum of squares = 1.198215e+03
The objective function = 1.208789e+03
The degrees of freedom = 34.00

7. Optional Parameters

A number of optional input and output parameters to nag_\texttt{tsa_multi_inp_model_estim} are available through the structure argument \texttt{options} of type \texttt{NagG13Opt}. A parameter may be selected by assigning an appropriate value to the relevant structure member. Those parameters not selected will be assigned default values. If no use is to be made of any of the optional parameters the user should use the null pointer, \texttt{G13_DEFAULT}, in place of \texttt{options} when calling nag_\texttt{tsa_multi_inp_model_estim}; the default settings will then be used for all parameters.

Before assigning values to \texttt{options} the structure must be initialised by a call to the function nag_\texttt{tsa_options_init} (g13bxc). Values may then be assigned directly to the structure members in the normal C manner.

Options selected are checked within nag_\texttt{tsa_multi_inp_model_estim} for being within the required range, if outside the range, an error message is generated.

When all calls to nag_\texttt{tsa_multi_inp_model_estim} have been completed and the results contained in the options structure are no longer required; then nag_\texttt{tsa_free} (g13xzc) should be called to free the NAG allocated memory from \texttt{options}.

7.1. Optional Parameters Checklist and Default Values

For easy reference, the following list shows the input and output members of \texttt{options} which are valid for nag_\texttt{tsa_multi_inp_model_estim} together with their default values where relevant. ϵ is the \textit{machine precision}.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>\texttt{Boolean list}</td>
<td>TRUE</td>
</tr>
<tr>
<td>\texttt{Nag_PrintType print_level}</td>
<td>\texttt{Nag_Soln}</td>
</tr>
<tr>
<td>\texttt{char outfile[80]}</td>
<td>stdout</td>
</tr>
<tr>
<td>\texttt{void (*print_fun)()}</td>
<td>NULL</td>
</tr>
<tr>
<td>\texttt{Boolean cfixed}</td>
<td>FALSE</td>
</tr>
<tr>
<td>\texttt{Nag_Likelihood criteria}</td>
<td>\texttt{Nag_Exact}</td>
</tr>
<tr>
<td>\texttt{Integer max_iter}</td>
<td>50</td>
</tr>
<tr>
<td>\texttt{double alpha}</td>
<td>0.01</td>
</tr>
<tr>
<td>\texttt{double beta}</td>
<td>10.0</td>
</tr>
<tr>
<td>\texttt{double delta}</td>
<td>1000.0</td>
</tr>
<tr>
<td>\texttt{double gamma}</td>
<td>max($100,\epsilon,10^{-7}$)</td>
</tr>
<tr>
<td>\texttt{Integer iter}</td>
<td></td>
</tr>
<tr>
<td>\texttt{double *cm}</td>
<td></td>
</tr>
<tr>
<td>\texttt{double *res}</td>
<td></td>
</tr>
<tr>
<td>\texttt{Integer lenres}</td>
<td></td>
</tr>
<tr>
<td>\texttt{double *zt}</td>
<td></td>
</tr>
<tr>
<td>\texttt{double *noise}</td>
<td></td>
</tr>
</tbody>
</table>

7.2. Description of Optional Parameters

- \texttt{list} – \texttt{Boolean}
 Default = \texttt{TRUE}
 Input: If \texttt{options.list} = \texttt{TRUE} then the parameter settings which are used in the call to nag_\texttt{tsa_multi_inp_model_estim} will be printed.

- \texttt{print_level} – \texttt{Nag_PrintType}
 Default = \texttt{Nag_Soln}
 Input: the level of results produced by nag_\texttt{tsa_multi_inp_model_estim}. The following values are available.

 - \texttt{Nag_NoPrint}
 No output.
 - \texttt{Nag_Soln}
 The final solution.
 - \texttt{Nag_Iter}
 One line of output for each iteration.
Nag_Soln_Iter The final solution and one line of output for each iteration.
Nag_Soln_Iter_Full The final solution and detailed printout at each iteration.

Details of each level of results printout are described in Section 7.3.
Constraint: options.print_level = Nag_PrintNotSet or Nag_Soln or Nag_Iter or Nag_Soln_Iter
or Nag_Soln_Iter_Full.

outfile[80] – char
Default = stdout
Input: name of file to which the results of monitoring the course of the optimization should be printed. If options.outfile[0] = '\0' then the stdout stream is used.

print_fun – pointer to a function returning void
Default = NULL
Input: printing function defined by the user; the prototype of print_fun is

void (*print_fun)(const Nag_UserPrintFun *bfx, Nag_Comm *Comm);
See Section 7.3.1. below for further details.

cfixed – Boolean
Default = FALSE
Input: cfixed must be set to TRUE if the constant c is to remain fixed at its initial value, and to FALSE if it is to be estimated.

criteria – Nag_Likelihood
Default = Nag_Exact
Input: indicates the likelihood option for the estimation criterion. criteria must be set to Nag_LeastSquares, Nag_Exact or Nag_Marginal, to select the least-squares, exact or marginal likelihood, respectively.
Constraint: options.criteria = Nag_LeastSquares, Nag_Exact or Nag_Marginal.

max_iter – Integer
Default = 50
Input: the maximum required number of iterations. If max_iter = 0, no change is made to any of the model parameters in array para except that the constant c (if options.cfixed = FALSE) and any ω relating to simple input series are estimated. (Apart from these, estimates are always derived for the nuisance parameters relating to any backforecasts and any pre-observation period effects for transfer function inputs.)
Constraint: options.max_iter \geq 0.

alpha – double
Default = 0.01.
Input: α, the value used to constrain the magnitude of the search procedure steps (see Section 3.3).
Constraint: options.alpha > 0.0.

beta – double
Default = 10.0
Input: β, the multiplier which regulates the value of α (see Section 3.3).
Constraint: options.beta > 1.0.

delta – double
Default = 1000.0
Input: δ, the value of the stationarity and invertibility test tolerance factor (see Section 3.3).
Constraint: options.delta \geq 1.0.

gamma – double
Default = max(100\epsilon, 1.0 \times 10^{-7}); ϵ is the machine precision
Input: γ, the convergence criterion (see Section 3.3).
Constraint: 0.0 \leq options.gamma < 1.0.

iter – Integer
Output: the number of iterations carried out.
A value of iter = −1 on exit indicates that the only estimates obtained up to this point have been for the nuisance parameters relating to backforecasts, unless the marginal likelihood option is used in which case estimates have also been obtained for simple input coefficients ω and for the constant c (if options.cfixed = FALSE). This value of iter usually indicates a failure in a consequent step of estimating transfer function input pre-observation period nuisance parameters.
A value of iter = 0 on exit indicates that estimates have been obtained up to this point for the constant c (if options.cfixed = FALSE), for simple input coefficients ω and for the nuisance parameters relating to the backforecasts and to transfer function input pre-observation period effects.
cm – double *
Default memory = npara × npara
Output: This pointer is allocated memory internally with npara rows by npara columns. The npara rows and columns of cm contain the correlation coefficients relating to each pair of parameters in para. All coefficients relating to the constant will be zero if the constant is fixed. However, if the function fails to invert the second derivative matrix, in which case fail_code will have an exit value of NE_MAT_NOT_POS_DEF, then the contents of options.cm will be indeterminate.

res – double *
Output: the values of the residuals relating to the differenced values of the output series. This pointer is allocated memory internally with options.lenres elements.

leures – Integer
Output: The length of res.

zt – double *
Default memory = nxxy × (ns series – 1)
Output: This pointer is allocated memory internally with nxxy rows by (ns series – 1) columns. The columns of zt hold the values of the input component series z_t.

noise – double *
Default memory = nxxy
Output: This pointer is allocated memory internally with nxxy elements. It holds the output noise component n_t.

7.3. Description of Printed Output

The level of printed output can be controlled by the user with the structure members options.list and options.print_level, see section 7.2. If list = TRUE then the parameter values to nag_esa_multi_inp_model_estim are listed, whereas the printout of results is governed by the value of print_level. The default of print_level = Nag_Sol which provides a printout of the final solution. This section describes all of the possible levels of results printout available from nag_esa_multi_inp_model_estim.

When options.print_level = Nag_Iter or Nag_Soln_Iter a single line of output is produced at each iteration, this gives the following values.

Iter the current iteration number, options.iter.
Residual the residual sum of squares, rss.
Objf the objective function at the latest set of parameter estimates.

When options.print_level = Nag_Soln_Iter_Full a description and value for each of the parameters in the para array is output. The descriptions are phi for φ, theta for θ, phi for Φ, theta for Θ, omega/si for ω in a simple input, omega for ω in a transfer function input, delta for δ and constant for c. In addition series 1, series 2, etc, indicate the input series relevant to the omega and delta parameters.

If options.print_level = Nag_Soln or Nag_Soln_Iter or Nag_Soln_Iter_Full the final solution is printed out. This consists of:

i the parameter number.
para[i] the values of the parameter.
sd the standard deviations.
options.iter the number of iterations carried out.
rss the residual sum of squares.
objf the objective function.
df the degrees of freedom.

If options.print_level = Nag_NoPrint then printout will be suppressed; the user can print the final solution when nag_esa_multi_inp_model_estim returns to the calling program.

7.3.1. Output of results via a user defined printing function

The user may also specify their own print function for output of iteration results and the final solution by use of the options.print_fun function pointer, prototype

void (*print_fun) (const Nag_UserPrintFun *bfx, Nag_Comm *Comm);
The rest of this section can be skipped if the default printing facilities provide the required functionality.

When a user-defined function is assigned to `options.print_fun` this will be called in preference to the internal print function of `nag_tsa_multi_inp_model_estim`. Calls to the user-defined function are again controlled by means of the `options.print_level` member. Information is provided through two structure arguments to `print_fun`, the structure of type `Nag_UserPrintFun` contains the following members relevant to `nag_tsa_multi_inp_model_estim`:

- `ite` – Integer
 The number of the particular iteration being monitored.

- `rss` – double
 The residual sum of squares, S, at the latest set of valid parameter estimates.

- `objf` – double
 The objective function, D, at the latest set of valid parameter estimates.

- `para` – double *
 Pointer to memory containing `npara` latest values of the estimates of the multi-input model parameters.

- `npara` – Integer
 The exact number of ϕ, θ, Φ, Θ, ω, δ and c parameters.

- `npe` – Integer
 The number of ARIMA (ϕ, θ, Φ, Θ), omega (ω), delta (δ), and c parameters being estimated.

- `mtyp` – Integer *
- `mser` – Integer *
 Pointers to memory, each with `npe` elements. The value of each element in `mtyp` and `mser` corresponds to the description of each parameter estimated in `para`.
 The following should be read in conjunction with the description of the parameter `options.print`. The relevant description for the value of `para` is:

 - `mtyp[i]` Description
 1. phi
 2. theta
 3. sphi
 4. stheta
 5. omega/si series `mser[i]`
 6. omega series `mser[i]`
 7. delta series `mser[i]`
 8. constant

 for $i = 0, 1, \ldots, \text{npe}$.
 For the phi, theta, sphi, stheta and constant parameters, `mser[i] = 0`.

- `sd` – double *
 Pointer to memory containing the `npara` values of the standard deviations.

- `df` – double
 The number of degrees of freedom associated with S.

8. Error Indications

NE_G13_OPTIONS_NOT_INIT
On entry, the option structure, `options`, has not been initialised using `nag_tsa_options_init` (`g13bxc`).

NE_INT_ARRAY_2
Value (value) given to `transfv.r[(value)]` not valid. Correct range for elements of `transfv.r` is $1 \leq r[i] \leq 3$.

NE_G13_ORDERS_NOT_INIT
On entry, the orders array structure, `transfv`, has not been successfully initialised using function `nag_tsa_transf_orders` (`g13byc`).
NE_BAD_PARAM
 On entry, parameter options.cfixed had an illegal value.
 On entry, parameter options.criteria had an illegal value.
 On entry, parameter options.print_level had an illegal value.

NE_INT_ARG_LT
 On entry, nseries must not be less than 1: nseries = ⟨value⟩.
 On entry, options.max_iter must not be less than 0: options.max_iter = ⟨value⟩.

NE_2_INT_ARG_LT
 On entry, tdxxy = ⟨value⟩ while nseries = ⟨value⟩. These parameters must satisfy tdxxy ≥ nseries.

NE_REAL_ARG_LE
 On entry, options.alpha must not be less than or equal to 0.0: options.alpha = ⟨value⟩.
 On entry, options.beta must not be less than or equal to 1.0: options.beta = ⟨value⟩.

NE_REAL_ARG_LT
 On entry, options.delta must not be less than 1.0: options.delta = ⟨value⟩.
 On entry, options.gamma must not be less than 0.0: options.gamma = ⟨value⟩.

NE_REAL_ARG_GE
 On entry, options.gamma must not be greater than or equal to 1.0: options.gamma = ⟨value⟩.

NE_ALLOC_FAIL
 Memory allocation failed.

NE_INVALID_NSER
 On entry, nseries = 1 and there are no parameters in the model, i.e., (p = q = P = Q = 0
 and options.cfixed = TRUE).

NE_NSER_INCONSIST
 Value of nseries passed to nag_tsa_transf_orders (g13byc) was ⟨value⟩ which is not equal to
 the value ⟨value⟩ passed in this function.

NE_NPARA_MR_MT_INCONSIST
 On entry, there is inconsistency between npara on the one hand and the elements in the orders
 structures, arimav and transfv on the other.

NE_DELTA_TEST_FAILED
 On entry, or during execution, one or more sets of δ parameters do not satisfy the stationarity
 or invertibility test conditions.

NE_SOLUTION_FAIL_CONV
 Iterative refinement has failed to improve the solution of the equations giving the latest
 estimates of the parameters. This occurred because the matrix of the set of equations is too
 ill-conditioned.

NE_MAT_NOT_POS_DEF
 Attempt to invert the second derivative matrix needed in the calculation of the covariance
 matrix of the parameter estimates has failed. The matrix is not positive-definite, possibly
 due to rounding errors.

NE_ARIMA_TEST_FAILED
 On entry, or during execution, one or more sets of the ARIMA (φ, θ, Φ or Θ) parameters do
 not satisfy the stationarity or invertibility test conditions.

NE_INTERNAL_ERROR
 An internal error has occurred in this function. Check the function call and any array sizes.
 If the call is correct then please consult NAG for assistance.

NE_ITER_FAIL_NIT
 The function has failed to converge after options.max_iter iterations, where options.max_iter
 = ⟨value⟩.
 If steady decreases in the objective function, D, were monitored up to the point where this
 exit occurred, see the optional parameter print_level, then options.max_iter was probably set
 too small. If so the calculations should be restarted from the final point held in para.
The orders of differencing specified in the structure arimav must satisfy \(nxxy > \text{arimav.d} + (\text{arimav.s} \times \text{arimav.bigd}) \), \(nxxy = \langle \text{value} \rangle \), \(\text{arimav.d} = \langle \text{value} \rangle \), \(\text{arimav.s} = \langle \text{value} \rangle \), \(\text{arimav.bigd} = \langle \text{value} \rangle \).

If the intermediate results of optimization are written to a file using the optional parameter outfile, then the following errors could also occur.

NE_NOT_APPEND_FILE

Cannot open file \(\langle \text{string} \rangle \) for appending.

NE_WRITE_ERROR

Error occurred when writing to file \(\langle \text{string} \rangle \).

NE_NOT_CLOSE_FILE

Cannot close file \(\langle \text{string} \rangle \).

9. Further Comments

The time taken by the function is approximately proportional to \(nxxy \times \text{options.iter} \times npara^2 \).

9.1. Accuracy

The computation used is believed to be stable.

9.2. References

10. See Also

nag_tsa_multi_inp_model_forecast (g13bjc)
nag_tsa_options_init (g13bxc)
nag_tsa_transf_orders (g13byc)
nag_tsa_trans_free (g13bzc)
nag_tsa_free (g13xzc)

11. Example 2

This example illustrates the use of the options parameter in a call to nag_tsa_multi_inp_model_estim.

The data in the example relate to the same 40 observations of an output time series and of a single input time series as in Example 1. The noise series has one autoregressive (\(\phi \)) and one seasonal moving average (\(\Theta \)) parameter (both of which are initially set to zero) for which the seasonal period is 4. The input series is defined by orders \(b_1 = 1 \), \(q_1 = 0 \), \(p_1 = 1 \), \(r_1 = 3 \), so that it has one \(\omega \) (initially set to 2.0) and one \(\delta \) (initially set to 0.5), and allows for pre-observation period effects. The constant (initially set to zero) is to be estimated so that the flag for the constant \(c, \text{options.cfixed} \), remains unchanged from its default value of FALSE. Default values of options.asp are used. Up to 20 iterations are allowed so that options.max_iter is set to 20, and the progress of these is monitored and solution output by setting options.print_level to Nag_Soln_Iter_Full. Marginal likelihood is the chosen estimation criterion so that options.criteria is set to Nag_Marginal.

After the successful call to nag_tsa_multi_inp_model_estim, the following are computed and printed out: the correlation matrix, the residuals for the 36 differenced values and the values of \(z_t \) and \(n_t \).

11.1. Program Text

```c
static void ex2()
{
    double df, objf, rss;
```
Integer i, j, npara, nseries, inser, nxyy;
double para[NPMAX], sd[NPMAX], xxy[NXXXMX][NSERMX];
Nag_ArimaOrder arimav;
Nag_TransfOrder transfv;
Nag_G13_Opt options;
NagError fail;

#define CM(I,J) options.cm[(J)+(I) * options.tdcm]
#define ZT(I,J) options.zt[(J)+(I) * options.tdzt]

Vprintf("\n\n\ng13bec example 2: using optional parameters\n");
INIT_FAIL(fail);
/* Skip heading in data file */
Vscanf(" %*[^\n\"]");
/*
* Initialise the option structure.
*/
g13bxc(&options);
Vscanf("%ld%ld%ld", &nxxy, &nseries, &options.max_iter);
if (nxxy>0 && nxxy<=NXXXMX && nseries>0 && nseries<=NSERMX)
{
 /*
 * Set some specific option variables to the desired values.
 */
 options.criteria = Nag_Marginal;
 options.print_level = Nag_Soln_Iter_Full;
 /*
 * Allocate memory to the arrays in structure transfv containing
 * the transfer function model orders of the input series.
 */
 g13byc(nseries, &transfv, NAGERR_DEFAULT);
 /*
 * Read the orders vector of the ARIMA model for the output noise
 * component into structure arimav.
 */
 Vscanf("%ld%ld%ld%ld%ld%ld", &arimav.p, &arimav.d, &arimav.q,
 &arimav.bigp, &arimav.bigd, &arimav.bigq, &arimav.s);
 /*
 * Read the transfer function model orders of the input series into
 * structure transfv.
 */
 inser = nseries - 1;
 for (j=0; j<inser; ++j)
 Vscanf("%ld", &transfv.b[j]);
 for (j=0; j<inser; ++j)
 Vscanf("%ld", &transfv.q[j]);
 for (j=0; j<inser; ++j)
 Vscanf("%ld", &transfv.l[j]);
 for (j=0; j<inser; ++j)
 Vscanf("%ld", &transfv.r[j]);

 npara = 0;
 for (i=0; i<inser; ++i)
 npara = npara + transfv.q[i] + transfv.p[i];
 npara = npara + arimav.p + arimav.q + arimav.bigp + arimav.bigq +
 + nseries;
 if (npara<=NPMAX)
 {
 for (i=0; i<npara; ++i)
 Vscanf("%lf", ¶[i]);
 for (i=0; i<nxxy; ++i)
 for (j=0; j<nseries; ++j)
 Vscanf("%lf", &xxy[i][j]);
 fail.print = TRUE;
 }
nag_tsa_multi_inp_model_estim

NAG C Library Manual

```c

g13bec(&arimav, nseries, &transfv, para, npara, nxxy, (double *)xxy,
        (Integer)TDXXY, sd, &rss, &objf, &df, &options, &fail);

Vprintf("The correlation matrix is \

for (i=0; i<npara; ++i)
    for (j=0; j<npara; ++j)
        Vprintf("%10.4f%c", CM(i,j), (j%5==4) ? '\n' : ' ');

Vprintf("The residuals and the z and n values are:\n
for (i=0; i<nxxy; ++i)
{
    if (i+1<options.lenres)
    {
        Vprintf("%4ld%15.3f", i+1, options.res[i]);
        for (j=0; j<nseries-1; ++j)
            Vprintf("%15.3f ", ZT(i,j));
        Vprintf("%15.3f\n", options.noise[i]);
    }
}
else
{
    Vfprintf(stderr, "npara is out of range: npara = %-3ld\n", npara);
    g13xzc(&options);
    g13bzc(&transfv);
    exit(EXIT_FAILURE);
}
else
{
    if (nxxy<=0 || nxxy>NXXYMX || nseries<=0 || nseries>NSERMX)
        Vfprintf(stderr, "One or both of nxxy and nseries are out of range:\n
    else
    {
        Vfprintf(stderr, "npara is out of range: npara = %-3ld\n", npara);
        g13xzc(&options);
        g13bzc(&transfv);
        exit(EXIT_FAILURE);
    }
}

11.2. Program Data

Example 2 Data

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>40</td>
<td>2</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>0.0</td>
<td>2.0</td>
<td>0.5</td>
<td>0.0</td>
</tr>
</tbody>
</table>

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>8.075</td>
<td>105.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.819</td>
<td>119.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.366</td>
<td>119.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.113</td>
<td>109.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.380</td>
<td>117.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.134</td>
<td>135.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.222</td>
<td>126.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.768</td>
<td>112.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.386</td>
<td>116.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.965</td>
<td>122.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.478</td>
<td>115.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.105</td>
<td>115.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.060</td>
<td>122.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.684</td>
<td>138.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.580</td>
<td>135.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.093</td>
<td>125.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.129</td>
<td>115.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.026</td>
<td>108.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.679</td>
<td>100.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.414</td>
<td>96.0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3.g13bec.16 [NP:3275/5/pdf]
11.3. Program Results

g13bec example 2: using optional parameters

Parameters to g13bec

\begin{verbatim}
nseries...................... 2
criteria............. Nag_Marginal cfixed..................... FALSE
alpha.................... 1.00e-02 beta.................... 1.00e+01
delta.................... 1.00e+03 gamma................... 1.00e-07
print_level... Nag_Soln_Iter_Full
outfile................. stdout
\end{verbatim}

\begin{verbatim}
Iter = -1 Residual = 6.456655e+03 Objf = 7.097184e+03
phi 0.0000000e+00
stheta 0.0000000e+00
omega series 1 2.0000000e+00
delta series 1 5.0000000e-01
constant 8.6833990e+01

Iter = 0 Residual = 5.802775e+03 Objf = 6.378435e+03
phi 0.0000000e+00
stheta 0.0000000e+00
omega series 1 2.0000000e+00
delta series 1 5.0000000e-01
constant 8.5732720e+01

Iter = 1 Residual = 2.354664e+03 Objf = 2.498647e+03
phi 6.589153e-01
stheta 6.571389e-02
omega series 1 3.721182e+00
delta series 1 5.237968e-01
constant 5.739128e+01

Iter = 2 Residual = 1.922339e+03 Objf = 2.032375e+03
phi 6.417690e-01
stheta -2.361191e-01
omega series 1 4.523132e+00
delta series 1 5.742824e-01
constant 3.814856e+01

Iter = 3 Residual = 1.530797e+03 Objf = 1.630603e+03
phi 5.550797e-01
\end{verbatim}
nag_tsa_multi_inp_model_estim

\[
\begin{align*}
\text{Iter} & = 4 & \text{Residual} & = 1.232926e+03 & \text{Objf} & = 1.324116e+03 \\
\phi & = 3.698329e-01 \\
\text{stheta} & = -2.145294e-01 \\
\omega & = 7.697297e+00 \\
\delta & = 7.358370e-01 \\
\text{constant} & = -9.322197e+01 \\
\text{Iter} & = 5 & \text{Residual} & = 1.200813e+03 & \text{Objf} & = 1.289272e+03 \\
\phi & = 3.889281e-01 \\
\text{stheta} & = -2.649652e-01 \\
\omega & = 8.906746e+00 \\
\delta & = 6.659905e-01 \\
\text{constant} & = -7.782515e+01 \\
\text{Iter} & = 6 & \text{Residual} & = 1.197922e+03 & \text{Objf} & = 1.286734e+03 \\
\phi & = 3.752731e-01 \\
\text{stheta} & = -2.499956e+01 \\
\omega & = 8.951772e+00 \\
\delta & = 6.616140e-01 \\
\text{constant} & = -7.656262e+01 \\
\text{Iter} & = 7 & \text{Residual} & = 1.197934e+03 & \text{Objf} & = 1.286623e+03 \\
\phi & = 3.804046e-01 \\
\text{stheta} & = -2.594526e+01 \\
\omega & = 8.954182e+00 \\
\delta & = 6.599012e-01 \\
\text{constant} & = -7.553429e+01 \\
\text{Iter} & = 8 & \text{Residual} & = 1.198009e+03 & \text{Objf} & = 1.286613e+03 \\
\phi & = 3.807082e-01 \\
\text{stheta} & = -2.580559e+01 \\
\omega & = 8.956063e+00 \\
\delta & = 6.597438e-01 \\
\text{constant} & = -7.549190e+01 \\
\text{Iter} & = 9 & \text{Residual} & = 1.197988e+03 & \text{Objf} & = 1.286612e+03 \\
\phi & = 3.808772e-01 \\
\text{stheta} & = -2.580559e+01 \\
\omega & = 8.955983e+00 \\
\delta & = 6.596508e-01 \\
\text{constant} & = -7.543851e+01 \\
\text{Iter} & = 10 & \text{Residual} & = 1.198002e+03 & \text{Objf} & = 1.286611e+03 \\
\phi & = 3.809218e-01 \\
\text{stheta} & = -2.575832e+01 \\
\omega & = 8.961060e+00 \\
\delta & = 6.596484e-01 \\
\text{constant} & = -7.540056e+01 \\
\text{Iter} & = 11 & \text{Residual} & = 1.197997e+03 & \text{Objf} & = 1.286611e+03 \\
\phi & = 3.809235e-01 \\
\text{stheta} & = -2.577863e+01 \\
\omega & = 8.956084e+00 \\
\delta & = 6.596411e-01 \\
\text{constant} & = -7.543552e+01
\end{align*}
\]
The number of iterations carried out is 11

The final values of the parameters and their standard deviations are

<table>
<thead>
<tr>
<th>i</th>
<th>para[i]</th>
<th>sd</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.380924</td>
<td>0.166379</td>
</tr>
<tr>
<td>2</td>
<td>-0.257786</td>
<td>0.178178</td>
</tr>
<tr>
<td>3</td>
<td>8.956084</td>
<td>0.948061</td>
</tr>
<tr>
<td>4</td>
<td>0.659641</td>
<td>0.060239</td>
</tr>
<tr>
<td>5</td>
<td>-75.435521</td>
<td>33.505341</td>
</tr>
</tbody>
</table>

The residual sum of squares = 1.197997e+03

The objective function = 1.286611e+03

The degrees of freedom = 34.00

The correlation matrix is

\[
\begin{bmatrix}
1.0000 & -0.1839 & -0.1775 & -0.0340 & 0.1394 \\
-0.1839 & 1.0000 & 0.0518 & 0.2547 & -0.2860 \\
-0.1775 & 0.0518 & 1.0000 & -0.3070 & -0.2926 \\
-0.0340 & 0.2547 & -0.3070 & 1.0000 & -0.8185 \\
0.1394 & -0.2860 & -0.2926 & -0.8185 & 1.0000 \\
\end{bmatrix}
\]

The residuals and the z and n values are

<table>
<thead>
<tr>
<th>i</th>
<th>res[i]</th>
<th>z(t)</th>
<th>noise(t)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.397</td>
<td>180.567</td>
<td>-75.567</td>
</tr>
<tr>
<td>2</td>
<td>3.086</td>
<td>191.430</td>
<td>-72.430</td>
</tr>
<tr>
<td>3</td>
<td>-2.818</td>
<td>196.302</td>
<td>-77.302</td>
</tr>
<tr>
<td>4</td>
<td>-9.941</td>
<td>195.460</td>
<td>-86.460</td>
</tr>
<tr>
<td>5</td>
<td>-5.061</td>
<td>201.594</td>
<td>-84.594</td>
</tr>
<tr>
<td>6</td>
<td>14.053</td>
<td>199.076</td>
<td>-79.076</td>
</tr>
<tr>
<td>7</td>
<td>2.624</td>
<td>195.211</td>
<td>-69.211</td>
</tr>
<tr>
<td>8</td>
<td>-5.823</td>
<td>193.450</td>
<td>-81.450</td>
</tr>
<tr>
<td>9</td>
<td>-2.147</td>
<td>197.179</td>
<td>-81.179</td>
</tr>
<tr>
<td>10</td>
<td>-0.216</td>
<td>196.217</td>
<td>-74.217</td>
</tr>
<tr>
<td>11</td>
<td>-2.517</td>
<td>191.812</td>
<td>-76.812</td>
</tr>
<tr>
<td>12</td>
<td>7.916</td>
<td>184.544</td>
<td>-69.544</td>
</tr>
<tr>
<td>13</td>
<td>1.423</td>
<td>194.322</td>
<td>-72.322</td>
</tr>
<tr>
<td>14</td>
<td>11.936</td>
<td>200.369</td>
<td>-62.369</td>
</tr>
<tr>
<td>15</td>
<td>5.117</td>
<td>200.990</td>
<td>-65.990</td>
</tr>
<tr>
<td>16</td>
<td>-5.672</td>
<td>200.468</td>
<td>-75.468</td>
</tr>
<tr>
<td>17</td>
<td>-5.681</td>
<td>195.763</td>
<td>-80.763</td>
</tr>
<tr>
<td>18</td>
<td>-1.637</td>
<td>184.025</td>
<td>-76.025</td>
</tr>
<tr>
<td>19</td>
<td>-1.019</td>
<td>175.360</td>
<td>-75.360</td>
</tr>
<tr>
<td>20</td>
<td>-2.623</td>
<td>175.492</td>
<td>-79.492</td>
</tr>
<tr>
<td>21</td>
<td>3.283</td>
<td>182.162</td>
<td>-75.162</td>
</tr>
<tr>
<td>22</td>
<td>6.896</td>
<td>183.857</td>
<td>-68.857</td>
</tr>
<tr>
<td>23</td>
<td>5.395</td>
<td>190.797</td>
<td>-67.797</td>
</tr>
<tr>
<td>24</td>
<td>0.875</td>
<td>194.327</td>
<td>-72.327</td>
</tr>
<tr>
<td>25</td>
<td>-4.153</td>
<td>205.558</td>
<td>-77.558</td>
</tr>
<tr>
<td>26</td>
<td>6.206</td>
<td>204.261</td>
<td>-68.261</td>
</tr>
<tr>
<td>27</td>
<td>4.208</td>
<td>207.104</td>
<td>-67.104</td>
</tr>
<tr>
<td>28</td>
<td>-2.387</td>
<td>196.423</td>
<td>-74.423</td>
</tr>
<tr>
<td>29</td>
<td>-11.803</td>
<td>189.924</td>
<td>-87.924</td>
</tr>
<tr>
<td>30</td>
<td>6.435</td>
<td>175.158</td>
<td>-72.158</td>
</tr>
<tr>
<td>31</td>
<td>1.342</td>
<td>160.761</td>
<td>-71.761</td>
</tr>
<tr>
<td>32</td>
<td>-4.924</td>
<td>156.575</td>
<td>-79.575</td>
</tr>
<tr>
<td>33</td>
<td>4.799</td>
<td>164.256</td>
<td>-75.256</td>
</tr>
<tr>
<td>34</td>
<td>-0.074</td>
<td>167.783</td>
<td>-73.783</td>
</tr>
<tr>
<td>35</td>
<td>-6.023</td>
<td>184.483</td>
<td>-80.483</td>
</tr>
<tr>
<td>36</td>
<td>-6.427</td>
<td>193.055</td>
<td>-85.055</td>
</tr>
<tr>
<td>37</td>
<td>-2.527</td>
<td>199.390</td>
<td>-80.390</td>
</tr>
<tr>
<td>38</td>
<td>2.039</td>
<td>201.302</td>
<td>-75.302</td>
</tr>
<tr>
<td>39</td>
<td>0.243</td>
<td>195.695</td>
<td>-76.695</td>
</tr>
<tr>
<td>40</td>
<td>-3.166</td>
<td>183.738</td>
<td>-80.738</td>
</tr>
</tbody>
</table>