NAG C Library Function Document

nag_tabulate_margin (g11bcc)

1 Purpose

nag_tabulate_margin (g11bcc) computes a marginal table from a table computed by nag_tabulate_stats
(g11bac) or nag_tabulate_percentile (g11bbc) using a selected statistic.

2 Specification

void nag_tabulate_margin (Nag_TableStats stat, const double table[], Integer ncells,
 Integer ndim, const Integer idim[], const Integer isdim[], double sub_table[],
 Integer maxst, Integer *mcells, Integer *mdim, Integer mlevel[],
 double comm_ar[], NagError *fail)

3 Description

For a data set containing classification variables (known as factors) the routines nag_tabulate_stats
(g11bac) and nag_tabulate_percentile (g11bbc) compute a table using selected statistics, for example the
mean or the median. The table is indexed by the levels of the selected factors, for example if there were
three factors A, B and C with 3, 2 and 4 levels respectively and the mean was to be tabulated the resulting
table would be $3 \times 2 \times 4$ with each cell being the mean of all observations with the appropriate
combination of levels of the three factors. In further analysis the table of means averaged over C for A
and B may be required; this can be computed from the full table by taking the mean over the third
dimension of the table, C.

In general, given a table computed by nag_tabulate_stats (g11bac) or nag_tabulate_percentile (g11bbc),
nag_tabulate_margin (g11bcc) computes a sub-table defined by a subset of the factors used to define the
table such that each cell of the sub-table is the selected statistic computed over the remaining factors. The
statistics that can be used are the total, the mean, the median, the variance, the smallest and the largest
value.

4 References

John J A and Quenouille M H (1977) Experiments: Design and Analysis Griffin
532–555

5 Parameters

1: stat – Nag_TableStats

On entry: indicates which statistic is to be used to compute the marginal table.

If stat = Nag_TableStatsNObs the total.
If stat = Nag_TableStatsAv the average or mean.
If stat = Nag_TableStatsMedian the median.
If stat = Nag_TableStatsVar the variance.
If stat = Nag_TableStatsLarge the largest value.
If stat = Nag_TableStatsSmall the smallest value.

Constraint: stat = Nag_TableStatsNObs, Nag_TableStatsAv, Nag_TableStatsMedian,
Nag_TableStatsVar, Nag_TableStatsLarge or Nag_TableStatsSmall.
g11bcc

2: **table[ncells]** – const double

Input

On entry: the table as computed by nag_tabulate_stats (g11bac) or nag_tabulate_percentile (g11bbc).

3: **ncells** – Integer

Input

On entry: the number of cells in **table** as returned by nag_tabulate_stats (g11bac) or nag_tabulate_percentile (g11bbc).

4: **ndim** – Integer

Input

On entry: the number of dimensions for **table** as returned by nag_tabulate_stats (g11bac) or nag_tabulate_percentile (g11bbc).

Constraint: \(\text{ndim} \geq 2 \).

5: **idim[ndim]** – const Integer

Input

On entry: the number of levels for each dimension of **table** as returned by nag_tabulate_stats (g11bac) or nag_tabulate_percentile (g11bbc).

Constraint: \(\text{idim}[i] \geq 2 \) for \(i = 0, 1, \ldots, \text{ndim} - 1 \).

6: **isdim[ndim]** – const Integer

Input

On entry: indicates which dimensions of **table** are to be included in the sub-table. If \(\text{isdim}[i - 1] > 0 \) the dimension or factor indicated by \(\text{idim}[i - 1] \) is to be included in the sub-table, otherwise it is excluded.

7: **sub_table[maxst]** – double

Output

On exit: the first \(m\text{cells} \) elements contain the sub-table computed using the statistic indicated by **stat**. The table is stored in a similar way to **table** with the \(m\text{cells} \) cells stored so that for any two dimensions the index relating to the dimension given later in **idim** changes faster. For further details see Section 8.

8: **maxst** – Integer

Input

On entry: the maximum size of sub-table to be computed.

Constraint: \(\text{maxst} \geq \text{the product of the levels of the dimensions of } \text{table} \) included in the sub-table, **sub_table**.

9: **mcells** – Integer *

Output

On exit: the number of cells in the sub-table in **sub_table**.

10: **mdim** – Integer *

Output

On exit: the number of dimensions to the sub-table in **sub_table**.

11: **mlevel[ndim]** – Integer

Output

On exit: the first \(m\text{dim} \) elements contain the number of levels for the dimensions of the sub-table in **sub_table**. The remaining elements are not referenced.

12: **comm_ar[dim]** – double

Output

Note: the dimension, \(\text{dim} \), of the array **comm_ar** must be at least \(\text{maxst} \) when **stat** = Nag_TableStatsVar and at least 1 otherwise.

On exit: if **stat** = Nag_TableStatsVar\text{comm_ar} contains the sub-table of means corresponding to the sub-table of variances in **sub_table**. Otherwise **comm_ar** is not referenced.

13: **fail** – NagError *

Input/Output

The NAG error parameter (see the Essential Introduction).

g11bcc.2

[NP3645/7]
6 Error Indicators and Warnings

NE_INT
- On entry, element (value) of idim ≤ 1.
- On entry, ndim = (value).
- Constraint: ndim ≥ 2.

NE_INT_2
- On entry, ncells is incompatible with idim.
- On entry, maxst (= (value)) is too small, min value = (value).

NE_INT_ARRAY_ELEM_CONS
- On entry, all elements of isdim > 0.
- On entry, no elements of isdim > 0.

NE_ALLOC_FAIL
- Memory allocation failed.

NE_BAD_PARAM
- On entry, parameter (value) had an illegal value.

NE_INTERNAL_ERROR
- An internal error has occurred in this function. Check the function call and any array sizes. If the call is correct then please consult NAG for assistance.

7 Accuracy

Only applicable when stat = Nag_TableStatsVar. In this case a one pass algorithm is used as describe in West (1979).

8 Further Comments

The sub-tables created by nag_tabulate_margin (g11bcc) and stored in sub_table and, depending on stat, also in comm_ar are stored in the following way. Let there be m dimensions defining the table with dimension k having lk levels, then the cell defined by the levels i1, i2, ..., im of the factors is stored in sth cell given by

\[s = 1 + \sum_{k=1}^{m} [(i_k - 1)c_k], \]

where

\[c_j = \prod_{k=j+1}^{m} l_k \quad \text{for} \quad j = 1, 2, \ldots, n - 1 \quad \text{and} \quad c_m = 1. \]

9 Example

The data, given by John and Quenouille (1977), is for 3 blocks of a 3 × 6 factorial experiment. The data can be considered as a 3 × 6 × 3 table (i.e., blocks × treatment with 6 levels × treatment with 3 levels). This table is input and the 6 × 3 table of treatment means for over blocks is computed and printed.
9.1 Program Text

/* nag_tabulate_margin (g11bcc) Example Program.
 * Copyright 2002 Numerical Algorithms Group.
 * Mark 7, 2002.
 */

#include <stdio.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagg11.h>

int main(void)
{
 /* Scalars */
 Integer exit_status, i, j, k, maxst, mcells, mdim,
 ncells, ncol, ndim, nrow;
 NagError fail;
 Nag_TableStats stat_enum;
 char stat;

 /* Arrays */
 double *auxt = 0, *stable = 0, *table = 0;
 Integer *idim = 0, *isdim = 0, *mlevel = 0;

 INIT_FAIL(fail);
 exit_status = 0;
 Vprintf("g11bcc Example Program Results\n");

 /* Skip heading in data file */
 Vscanf("%*\[^
\] ");
 Vscanf("\%c\%ld\%ld\%*[\`\n] ", &stat, &ncells, &ndim);
 maxst = 54;

 /* Allocate arrays */
 if (!(auxt = NAG_ALLOC(maxst, double)) ||
 !(stable = NAG_ALLOC(maxst, double)) ||
 !(table = NAG_ALLOC(ncells, double)) ||
 !(idim = NAG_ALLOC(ndim, Integer)) ||
 !(isdim = NAG_ALLOC(ndim, Integer)) ||
 !(mlevel = NAG_ALLOC(ndim, Integer)))
 {
 Vprintf("Allocation failure\n");
 exit_status = -1;
 goto END;
 }

 for (i = 1; i <= ncells; ++i)
 Vscanf("%lf", &table[i-1]);
 Vscanf("%*[\`\n] ");

 for (j = 1; j <= ndim; ++j)
 Vscanf("%ld", &idim[j-1]);
 Vscanf("%*[\`\n] ");

 for (j = 1; j <= ndim; ++j)
 Vscanf("%ld", &isdim[j-1]);
 Vscanf("%*[\`\n] ");

 switch (stat)
 {
 case 'T':
 stat_enum = Nag_TableStatsNObs;
 break;
 case 'A':
 stat_enum = Nag_TableStatsAv;
 break;
 case 'M':
 break;
 }

 return exit_status;
}

END:

return exit_status;

#include <nag.h>
#include <nag_stdlib.h>
stat_enum = Nag_TableStatsMedian;
break;
case 'V':
 stat_enum = Nag_TableStatsVar;
 break;
case 'L':
 stat_enum = Nag_TableStatsLarge;
 break;
case 'S':
 stat_enum = Nag_TableStatsSmall;
 break;
default:
 stat_enum = Nag_TableStatsNObs;
}
g11bcc(stat_enum, table, ncells, ndim, idim, isdim, stable, maxst,
&mcells, &mdim, mlevel, auxt, &fail);
if (fail.code != NE_NOERROR)
{
 Vprintf("Error from g11bcc.\n%s\n", fail.message);
 exit_status = 1;
 goto END;
}
Vprintf("\n");
Vprintf(" Marginal Table\n");
Vprintf("\n");
ncol = mlevel[mdim-1];
nrow = mcells / ncol;
k = 1;
for (i = 1; i <= nrow; ++i)
{
 for (j = k; j <= k + ncol - 1; ++j)
 Vprintf("%7.2f ", stable[j-1]);
 Vprintf("\n");
 k += ncol;
}
END:
if (auxt) NAG_FREE(auxt);
if (stable) NAG_FREE(stable);
if (table) NAG_FREE(table);
if (idim) NAG_FREE(idim);
if (isdim) NAG_FREE(isdim);
if (mlevel) NAG_FREE(mlevel);
return exit_status;

9.2 Program Data

G11bcc Example Program Data

'A' 54 3

274 361 253 325 317 339 326 402 336 379 345 361 352 334 318 339 393 358
350 340 203 397 356 298 382 376 355 418 387 379 432 339 293 322 417 342
82 297 133 306 352 361 220 333 270 388 379 274 336 307 266 389 333 353
3 6 3
0 1 1

9.3 Program Results

G11bcc Example Program Results

Marginal Table

235.33 332.67 196.33
342.67	341.67	332.67
309.33	370.33	320.33
395.00	370.33	338.00
373.33	326.67	292.33
350.00	381.00	351.00