The second is an iterative algorithm, based on the Illinois method which is a modification of the computation of the Hodges–Lehmann estimator for a single population.

Let \(d_k \) denote the \(k \)th monotonically increasing step function of the random sample, \(\{x_i\} \). This estimator arises from inverting the two sample Mann–Whitney rank test statistic, \(U(\theta) \).

The confidence interval limits are also based on the inversion of the Mann–Whitney test statistic. Given a desired percentage for the confidence interval, \(1 - \alpha \), expressed as a proportion between 0.0 and 1.0 initial estimates of the upper and lower confidence limits for the Mann–Whitney \(U \) statistic are found.

\[\hat{\theta} = \text{median}\{y_j - x_i, i = 1, 2, \ldots, n; j = 1, 2, \ldots, m\}. \]

Let \(d_k \) for \(k = 1, 2, \ldots, nm \) denote the \(nm \) (ascendingly) ordered differences \(y_j - x_i \) for \(i = 1, 2, \ldots, n; j = 1, 2, \ldots, m \). Then

- if \(nm \) is odd, \(\hat{\theta} = d_k \) where \(k = (nm - 1)/2 \),
- if \(nm \) is even, \(\hat{\theta} = (d_k + d_{k+1})/2 \) where \(k = nm/2 \).

This estimator is defined by

\[\hat{\theta} = \text{median}\{y_j - x_i, i = 1, 2, \ldots, n; j = 1, 2, \ldots, m\}. \]

The estimate \(\hat{\theta} \) is the solution to the equation \(U(\hat{\theta}) = \mu \); two methods are available for solving this equation. These methods avoid the computation of all the ordered differences \(d_k \); this is because for large \(n \) and \(m \) both the storage requirements and the computation time would be high.

The first is an exact method based on a set partitioning procedure on the set of all differences \(y_j - x_i \) for \(i = 1, 2, \ldots, n; j = 1, 2, \ldots, m \). This is adapted from the algorithm proposed by Monahan (1984) for the computation of the Hodges–Lehmann estimator for a single population.

The second is an iterative algorithm, based on the Illinois method which is a modification of the regula falsi method, see McKean and Ryan (1977). This algorithm has proved suitable for the function \(U(\theta_0) \) which is asymptotically linear as a function of \(\theta_0 \).

The confidence interval limits are also based on the inversion of the Mann–Whitney test statistic. Given a desired percentage for the confidence interval, \(1 - \alpha \), expressed as a proportion between 0.0 and 1.0 initial estimates of the upper and lower confidence limits for the Mann–Whitney \(U \) statistic are found;
\[U_l = \mu - 0.5 + (\sigma \times \Phi^{-1}(\alpha/2)) \]

\[U_u = \mu + 0.5 + (\sigma \times \Phi^{-1}((1 - \alpha)/2)) \]

where \(\Phi^{-1} \) is the inverse cumulative Normal distribution function.

\(U_l \) and \(U_u \) are rounded to the nearest integer values. These estimates are refined using an exact method, without taking ties into account, if \(n + m \leq 40 \) and \(\max(n, m) \leq 30 \) and a Normal approximation otherwise, to find \(U_l \) and \(U_u \) satisfying

\[
\begin{align*}
P(U \leq U_l) & \leq \alpha/2 \\
P(U \leq U_l + 1) & > \alpha/2
\end{align*}
\]

and

\[
\begin{align*}
P(U \geq U_u) & \leq \alpha/2 \\
P(U \geq U_u - 1) & > \alpha/2
\end{align*}
\]

The function \(U(\theta_0) \) is a monotonically increasing step function. It is the number of times a score in the second sample, \(y_j \), precedes a score in the first sample, \(x_i + \theta \), where we only count a half if a score in the second sample actually equals a score in the first.

Let \(U_l = k \); then \(\theta_l = d_{k+1} \). This is the largest value \(\theta_l \) such that \(U(\theta_l) = U_l \).

Let \(U_u = nm - k \); then \(\theta_u = d_{nm-k} \). This is the smallest value \(\theta_u \) such that \(U(\theta_u) = U_u \).

As in the case of \(\hat{\theta} \), these equations may be solved using either the exact or iterative methods to find the values \(\theta_l \) and \(\theta_u \).

Then \((\theta_l, \theta_u)\) is the confidence interval for \(\theta \). The confidence interval is thus defined by those values of \(\theta_0 \) such that the null hypothesis, \(\theta = \theta_0 \), is not rejected by the Mann–Whitney two sample rank test at the \((100 \times \alpha)\%\) level.

4 References

Lehmann E L (1975) Nonparametrics: Statistical Methods Based on Ranks Holden–Day

5 Parameters

1: \textbf{method} – Nag_RCI

\textit{Input}

\textit{On entry:} specifies the method to be used.

If \textbf{method} = Nag_RCI_Exact, the exact algorithm is used.

If \textbf{method} = Nag_RCI_Approx, the iterative algorithm is used.

\textit{Constraint:} \textbf{method} = Nag_RCI_Exact or Nag_RCI_Approx.

2: \textbf{n} – Integer

\textit{Input}

\textit{On entry:} the size of the first sample, \(n \).

\textit{Constraint:} \(n \geq 1 \).

3: \textbf{x[n]} – const double

\textit{Input}

\textit{On entry:} the observations of the first sample, \(x_i \) for \(i = 1, 2, \ldots, n \).
4: \(m \) – Integer
 \(\text{Input} \)
 \(On \ \text{entry:} \) the size of the second sample, \(m \).
 \(Constraint: \ m \geq 1. \)

5: \(y[m] \) – const double
 \(\text{Input} \)
 \(On \ \text{entry:} \) the observations of the second sample, \(y_j \) for \(j = 1,2,\ldots,m \).

6: \(clevel \) – double
 \(\text{Input} \)
 \(On \ \text{entry:} \) the confidence interval required, \(1 - \alpha \); e.g., for a 95% confidence interval set \(clevel = 0.95. \)
 \(Constraint: \ 0.0 < clevel < 1.0. \)

7: \(\theta \) – double *
 \(\text{Output} \)
 \(On \ \text{exit:} \) the estimate of the difference in the location of the two populations, \(\hat{\theta} \).

8: \(\theta_l \) – double *
 \(\text{Output} \)
 \(On \ \text{exit:} \) the estimate of the lower limit of the confidence interval, \(\theta_l \).

9: \(\theta_u \) – double *
 \(\text{Output} \)
 \(On \ \text{exit:} \) the estimate of the upper limit of the confidence interval, \(\theta_u \).

10: \(estcl \) – double *
 \(\text{Output} \)
 \(On \ \text{exit:} \) an estimate of the actual percentage confidence of the interval found, as a proportion between \((0.0,1.0). \)

11: \(ulower \) – double *
 \(\text{Output} \)
 \(On \ \text{exit:} \) the value of the Mann–Whitney \(U \) statistic corresponding to the lower confidence limit, \(U_l \).

12: \(uupper \) – double *
 \(\text{Output} \)
 \(On \ \text{exit:} \) the value of the Mann–Whitney \(U \) statistic corresponding to the upper confidence limit, \(U_u \).

13: \(fail \) – NagError *
 \(\text{Input/Output} \)
 \(The \ NAG \ error \ parameter \ (see \ the \ Essential \ Introduction). \)

6 \ Error Indicators and Warnings

NE_INT_2
On entry, \(n < 1 \) or \(m < 1 \): \(n = \langle value \rangle, \ m = \langle value \rangle. \)

NE_CONVERGENCE
Warning. The iterative procedure to find an estimate of the upper confidence limit has not converged in 100 iterations.
Warning. The iterative procedure to find an estimate of the lower confidence limit has not converged in 100 iterations.
Warning. The iterative procedure to find an estimate of Theta has not converged in 100 iterations.

NE_REAL
On entry, \(clevel \) is out of range: \(clevel = \langle value \rangle. \)
Not enough information to compute an interval estimate since each sample has identical values. The common difference is returned in \(\theta \), \(\theta_l \) and \(\theta_u \).

Memory allocation failed.

On entry, parameter (value) had an illegal value.

An internal error has occurred in this function. Check the function call and any array sizes. If the call is correct then please consult NAG for assistance.

The function should return results accurate to 5 significant figures in the width of the confidence interval, that is the error for any one of the three estimates should be less than \(0.00001 \times (\theta_u - \theta_l) \).

The time taken increases with the sample sizes \(n \) and \(m \).

The following program calculates a 95% confidence interval for the difference in location between the two populations from which the two samples of sizes 50 and 100 are drawn respectively.

The program text is as follows:

```c
#include <stdio.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagg07.h>

int main(void)
{
    /* Scalars */
    double clevel, estcl, theta, thetal, thetau, ulower, uupper;
    Integer exit_status, i, m, n;
    NagError fail;

    /* Arrays */
    double *wrk=0, *x=0, *y=0;
    Integer *iwrk=0;

    INIT_FAIL(fail);
    exit_status = 0;
    Vprintf("g07ebc Example Program Results\n");

    /* Skip Heading in data file */
    Vscanf("%*[\n] \%d\%d\%[\n] ", &n, &m);

    /* Allocate memory */
    /* Rest of the program text */
}
```
if (!(wrk = NAG_ALLOC(600, double)) ||
! (x = NAG_ALLOC(n, double)) ||
! (y = NAG_ALLOC(m, double)) ||
! (iwrk = NAG_ALLOC(300, Integer)))
{
 Vprintf("Allocation failure\n");
 exit_status = -1;
 goto END;
}
Vscanf(" %*\n[\n] ");
for (i = 1; i <= n; ++i)
 Vscanf(" %lf", &x[i - 1]);
for (i = 1; i <= m; ++i)
 Vscanf(" %lf", &y[i - 1]);
Vscanf(" %*\n[\n] ");
Vscanf(" %lf%*\n[\n] ", &clevel);
g07ebc(Nag_RCI_Approx, n, x, m, y, clevel, &theta, &thetal, &thetau,
 &estcl, &ulower, &uupper, &fail);
if (fail.code != NE_NOERROR)
{
 Vprintf("Error from g07ebc.\n", fail.message);
 exit_status = 1;
 goto END;
}
Vprintf("\n");
Vprintf(" Location estimator Confidence Interval\n");
Vprintf("\n");
Vprintf(" %10.4f (%6.4f , %6.4f)\n", theta, thetal, thetau);
Vprintf("\n");
Vprintf(" Corresponding Mann-Whitney U statistics\n");
Vprintf("\n");
Vprintf(" Lower : %8.2f Upper : %8.2f\n", ulower, uupper);
END:
if (wrk) NAG_FREE(wrk);
if (x) NAG_FREE(x);
if (y) NAG_FREE(y);
if (iwrk) NAG_FREE(iwrk);
return exit_status;
}

9.2 Program Data

9.2.1 Program Data

90 100
First sample of N observations
-0.582 0.157 -0.523 -0.769 2.338 1.664 -0.981 1.549 1.131 -0.460
-0.484 1.932 0.306 -0.602 -0.979 0.132 0.256 -0.094 1.065 -1.084
-0.969 -0.524 0.239 1.512 -0.782 -0.252 -1.163 1.376 1.674 0.831
1.478 -1.486 -0.808 -0.429 -2.002 0.482 -1.584 -0.105 0.429 0.568
0.944 2.558 -1.801 0.242 0.763 -0.461 -1.497 -1.353 0.301 1.941
Second sample of M observations
1.995 0.007 0.997 1.089 2.004 0.171 0.294 2.448 0.214 0.773
2.960 0.025 0.638 0.937 -0.568 -0.711 0.931 2.601 1.121 -0.251
-0.050 1.341 2.282 0.745 1.633 0.944 2.370 0.293 0.895 0.938
0.199 0.812 1.253 0.590 1.522 -0.685 1.259 0.571 1.579 0.568
0.380 0.529 0.277 1.656 2.497 1.779 1.922 -0.174 2.132 2.793
0.102 1.569 1.267 0.490 0.077 1.366 0.056 0.605 0.628 1.650
0.104 2.194 2.869 -0.171 -0.598 2.134 0.917 0.630 0.209 1.328
0.368 0.756 2.645 1.161 0.347 0.920 1.256 -0.052 1.474 0.510
1.386 3.550 1.392 -0.358 1.938 1.727 -0.372 0.911 0.499 0.066
1.467 1.898 1.145 0.501 2.230 0.212 0.536 1.690 1.086 0.494
Confidence Level
0.95
9.3 Program Results

g07ebc Example Program Results

<table>
<thead>
<tr>
<th>Location estimator</th>
<th>Confidence Interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.9505</td>
<td>(0.5650, 1.3050)</td>
</tr>
</tbody>
</table>

Corresponding Mann-Whitney U statistics

Lower: 2007.00
Upper: 2993.00