NAG C Library Function Document

nag_rngs_sample (g05nbc)

1 Purpose
nag_rngs_sample (g05nbc) selects a pseudo-random sample without replacement from an integer vector.

2 Specification
void nag_rngs_sample (const Integer ipop[], Integer n, Integer isampl[], Integer m, Integer igen, Integer iseed[], NagError *fail)

3 Description
nag_rngs_sample (g05nbc) selects m elements from a population vector ipop of length n and places them in a sample vector isampl. Their order in ipop will be preserved in isampl. Each of the \(\binom{n}{m} \) possible combinations of elements of isampl may be regarded as being equally probable.

For moderate or large values of n (greater than 75 say), it is theoretically impossible that all combinations of size m may occur, unless m is near 1 or near n. This is because \(\binom{n}{m} \) exceeds the cycle length of nag_rngs_basic (g05kac) for all valid values of igen. For practical purposes this is irrelevant, as the time taken to generate all possible combinations is many millenia.

One of the initialisation functions nag_rngs_init_repeatable (g05kbc) (for a repeatable sequence if computed sequentially) or nag_rngs_init_nonrepeatable (g05kcc) (for a non-repeatable sequence) must be called prior to the first call to nag_rngs_sample (g05nbc).

4 References

5 Parameters
1: ipop[n] – const Integer Input
 On entry: the population to be sampled.

2: n – Integer Input
 On entry: the number of elements in the population vector to be sampled.
 Constraint: n ≥ 1.

3: isampl[m] – Integer Output
 On entry: the selected sample.

4: m – Integer Input
 On entry: the sample size.
 Constraint: 1 ≤ m ≤ n.
5: igen – Integer
 On entry: must contain the identification number for the generator to be used to return a pseudo-
 random number and should remain unchanged following initialisation by a prior call to one of the
 functions nag_rngs_init_repeatable (g05kbc) or nag_rngs_init_nonrepeatable (g05kcc).

 On entry: contains values which define the current state of the selected generator.
 On exit: contains updated values defining the new state of the selected generator.

7: fail – NagError *
 The NAG error parameter (see the Essential Introduction).

6 Error Indicators and Warnings

NE_INT
 On entry, n = ⟨value⟩.
 Constraint: n ≥ 1.

NE_INT_2
 On entry, m < 1 or m > n: m = ⟨value⟩, n = ⟨value⟩.

NE_BAD_PARAM
 On entry, parameter ⟨value⟩ had an illegal value.

NE_INTERNAL_ERROR
 An internal error has occurred in this function. Check the function call and any array sizes. If the
 call is correct then please consult NAG for assistance.

7 Accuracy
 Not applicable.

8 Further Comments
 The time taken by nag_rngs_sample (g05nbc) is of order n.
 In order to sample other kinds of vectors, or matrices of higher dimension, the following technique may be
 used:
 (a) set ipop[i] = i, for i = 1, 2, ..., n;
 (b) use nag_rngs_sample (g05nbc) to take a sample from ipop and put it into isampl;
 (c) use the contents of isampl as a set of indices to access the relevant vector or matrix.
 In order to divide a population into several groups, nag_rngs_permute (g05nac) is more efficient.

9 Example
 In the example program random samples of size 1, 2, ..., 8 are selected from a vector containing the first
 eight positive integers in ascending order. The samples are generated and printed for each sample size by
 a call to nag_rngs_sample (g05nbc) after initialisation by nag_rngs_init_repeatable (g05kbc).
9.1 Program Text

/* nag_rngs_sample(g05nbc) Example Program.
* Copyright 2001 Numerical Algorithms Group.
*/
#include <stdio.h>
#include <nag.h>
#include <nagg05.h>
#include <nagg05.h>

int main(void)
{
 /* Scalars */
 Integer i, igen, k, m, n;
 Integer exit_status=0;
 NagError fail;
 /* Arrays */
 Integer *ipop=0, *isampl=0;
 Integer iseed[4];
 INIT_FAIL(fail);
 Vprintf("g05nbc Example Program Results\n\n");
 n=8;
 /* Allocate memory */
 if (!(ipop = NAG_ALLOC(n, Integer)) ||
 !(isampl = NAG_ALLOC(n, Integer)))
 {
 Vprintf("Allocation failure\n");
 exit_status = -1;
 goto END;
 }
 /* Initialise the seed to a repeatable sequence */
 iseed[0] = 1762543;
 iseed[1] = 9324783;
 iseed[2] = 1542344;
 iseed[3] = 742355;
 /* igen identifies the stream. */
 igen = 1;
 g05kbc(&igen, iseed);
 Vprintf(" Samples from the first %1ld integers\n", n);
 Vprintf("n");
 Vprintf(" Sample size Values\n");
 for (i = 0; i < n; ++i)
 isop[i] = i+1;
 for (m = 1; m <= n; ++m)
 {
 g05nbc(ipop, n, isampl, m, igen, iseed, &fail);
 if (fail.code != NE_NOERROR)
 {
 Vprintf("Error from g05nbc.\n", fail.message);
 exit_status = 1;
 goto END;
 }
 Vprintf("%6ld ", m);
 for (k = 0; k < m; ++k)
 {
 Vprintf("%3ld\n", isampl[k], (k+1)%8 == 0 || k == m-1 ?"\n": ");
 }
 }
 END:
 if (ipop) NAG_FREE(ipop);
 if (isampl) NAG_FREE(isampl);
 return exit_status;
}
9.2 Program Data

None.

9.3 Program Results

g05nbc Example Program Results

Samples from the first 8 integers

<table>
<thead>
<tr>
<th>Sample size</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>2 5</td>
</tr>
<tr>
<td>3</td>
<td>3 4 8</td>
</tr>
<tr>
<td>4</td>
<td>2 4 5 6</td>
</tr>
<tr>
<td>5</td>
<td>1 2 4 6 8</td>
</tr>
<tr>
<td>6</td>
<td>1 2 3 5 7 8</td>
</tr>
<tr>
<td>7</td>
<td>1 2 3 4 5 6 8</td>
</tr>
<tr>
<td>8</td>
<td>1 2 3 4 5 6 7 8</td>
</tr>
</tbody>
</table>