NAG C Library Function Document

nag_rngs_poisson (g05mkc)

1 Purpose

nag_rngs_poisson (g05mkc) generates a vector of pseudo-random integers from the discrete Poisson distribution with mean λ.

2 Specification

```c
void nag_rngs_poisson (Integer mode, double lambda, Integer n, Integer x[],
                      Integer igen, Integer iseed[], double r[], NagError *fail)
```

3 Description

nag_rngs_poisson (g05mkc) generates n integers x_i from a discrete Poisson distribution with mean λ, where the probability of $x_i = I$ is

$$P(x_i = I) = \frac{\lambda^I \times e^{-\lambda}}{I!}, \quad I = 0, 1, \ldots,$$

where $0 \leq \lambda$.

The variates can be generated with or without using a search table and index. If a search table is used then it is stored with the index in a reference vector and subsequent calls to nag_rngs_poisson (g05mkc) with the same parameter values can then use this reference vector to generate further variates. The reference array is found using a recurrence relation if λ is less than 50 and by Stirling’s formula otherwise.

One of the initialisation functions nag_rngs_init_repeateable (g05kbc) (for a repeatable sequence if computed sequentially) or nag_rngs_init_nonrepeateable (g05kcc) (for a non-repeatable sequence) must be called prior to the first call to nag_rngs_poisson (g05mkc).

4 References

5 Parameters

1: mode – Integer

Input

On entry: a code for selecting the operation to be performed by the function:

- mode = 0
 - Set up reference vector only.

- mode = 1
 - Generate variates using reference vector set up in a prior call to nag_rngs_poisson (g05mkc).

- mode = 2
 - Set up reference vector and generate variates.

- mode = 3
 - Generate variates without using the reference vector.

Constraint: $0 \leq \text{mode} \leq 3$.

[NP3645/7] g05mkc.1
2: lambda – double
 Input
 On entry: the mean \(\lambda \) of the Poisson distribution.
 Constraint: \(\lambda \geq 0.0 \).

3: n – Integer
 Input
 On entry: the number, \(n \), of pseudo-random numbers to be generated.
 Constraint: \(n \geq 1 \).

4: x[n] – Integer
 Output
 On exit: the \(n \) pseudo-random numbers from the specified Poisson distribution.

5: igen – Integer
 Input
 On entry: must contain the identification number for the generator to be used to return a pseudo-
 random number and should remain unchanged following initialisation by a prior call to one of the
 functions nag_rngs_init_repeatable (g05kbc) or nag_rngs_init_nonrepeatable (g05kcc).

 Input/Output
 On entry: contains values which define the current state of the selected generator.
 On exit: contains updated values defining the new state of the selected generator.

7: r[dim] – double
 Input/Output
 Note: the dimension, \(dim \), of the array \(r \) must be at least \(22 + 20 \times \sqrt{\lambda} \) when \(\text{mode} < 3 \) and
 at least 1 otherwise.
 On exit: the reference vector.

8: fail – NagError *
 Input/Output
 The NAG error parameter (see the Essential Introduction).

6 Error Indicators and Warnings

NE_INT
 On entry, \(\text{mode} = (\text{value}) \).
 Constraint: \(0 \leq \text{mode} \leq 3 \).
 On entry, \(n = (\text{value}) \).
 Constraint: \(n \geq 1 \).

NE_DIM_INFEASIBLE
 lambda is so large that the reference vector length would exceed integer range. We recommend
 setting \(\text{mode} = 3 \). \(\lambda = (\text{value}) \).

NE_PREV_CALL
 lambda has changed since \(r \) was set up in a previous call. Previous value of \(\lambda = (\text{value}) \),
 \(\lambda = (\text{value}) \).

NE_REAL
 On entry, \(\lambda = (\text{value}) \).
 Constraint: \(\lambda \geq 0.0 \).
NE_BAD_PARAM
On entry, parameter (value) had an illegal value.

NE_INTERNAL_ERROR
An internal error has occurred in this function. Check the function call and any array sizes. If the call is correct then please consult NAG for assistance.

7 Accuracy
Not applicable.

8 Further Comments
None.

9 Example
The example program prints 10 pseudo-random integers from a Poisson distribution with mean $\lambda = 20$, generated by a single call to nag_rngs_poisson (g05mkc), after initialisation by nag_rngs_init_repeatable (g05kbc).

9.1 Program Text
/* nag_rngs_poisson(g05mkc) Example Program. */
/* * Copyright 2001 Numerical Algorithms Group. */
/* * Mark 7, 2001. */
/*
#include <stdio.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagg05.h>

int main(void)
{
 /* Scalars */
 double lambda;
 Integer i, igen, n, nr;
 Integer exit_status=0;
 NagError fail;
 /* Arrays */
 double *r=0;
 Integer *x=0;
 Integer iseed[4];

 INIT_FAIL(fail);
 Vprintf("g05mkc Example Program Results\n\n");
 nr = 120;
 n = 10;

 /* Allocate memory */
 if (!r = NAG_ALLOC(nr, double)) ||
 !(x = NAG_ALLOC(n, Integer))
 {
 Vprintf("Allocation failure\n");
 exit_status = -1;
 goto END;
 }

 /* Set the distribution parameter LAMBDA */
 lambda = 20.0;
/* Initialise the seed to a repeatable sequence */
iseed[0] = 1762543;
iseed[1] = 9324763;
iseed[2] = 42344;
iseed[3] = 742355;
/* igen identifies the stream. */
igen = 1;
g05kbc(&igen, iseed);

/* Generate reference vector R */
g05mkc(0, lambda, n, x, igen, iseed, r, &fail);
if (fail.code != NE_NOERROR)
 { Vprintf("Error from g05mkc.\n%s\n", fail.message);
 exit_status = 1;
 goto END;
 }
/* Generate integers and store in X */
g05mkc(1, lambda, n, x, igen, iseed, r, &fail);
if (fail.code != NE_NOERROR)
 { Vprintf("Error from g05mkc.\n%s\n", fail.message);
 exit_status = 1;
 goto END;
 }
for (i = 0; i < n; ++i)
 { Vprintf("%12ld\n", x[i]);
 }
END:
if (r) NAG_FREE(r);
if (x) NAG_FREE(x);
return exit_status;

9.2 Program Data
None.

9.3 Program Results

<table>
<thead>
<tr>
<th>g05mkc Example Program Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
</tr>
<tr>
<td>28</td>
</tr>
<tr>
<td>19</td>
</tr>
<tr>
<td>23</td>
</tr>
<tr>
<td>28</td>
</tr>
<tr>
<td>19</td>
</tr>
<tr>
<td>21</td>
</tr>
<tr>
<td>19</td>
</tr>
<tr>
<td>18</td>
</tr>
<tr>
<td>26</td>
</tr>
</tbody>
</table>