1 Purpose
nag_rngs_logarithmic (g05mdc) generates a vector of pseudo-random integers from the discrete logarithmic distribution with parameter a.

2 Specification
void nag_rngs_logarithmic (Integer mode, double a, Integer n, Integer x[],
 Integer igen, Integer iseed[], double r[], NagError *fail)

3 Description
nag_rngs_logarithmic (g05mdc) generates n integers x_i from a discrete logarithmic distribution, where the probability of $x_i = I$ is

$$P(x_i = I) = \frac{\left(a^I\right)}{(I \times \log(1-a))} \quad I = 1, 2, \ldots,$$

where $0 < a < 1$.

The variates can be generated with or without using a search table and index. If a search table is used then it is stored with the index in a reference vector and subsequent calls to nag_rngs_logarithmic (g05mdc) with the same parameter value can then use this reference vector to generate further variates.

One of the initialisation functions nag_rngs_init_repeatable (g05kbc) (for a repeatable sequence if computed sequentially) or nag_rngs_init_nonrepeatable (g05kcc) (for a non-repeatable sequence) must be called prior to the first call to nag_rngs_logarithmic (g05mdc).

4 References

5 Parameters
1: mode – Integer

 Input

 On entry: a code for selecting the operation to be performed by the function:

 mode = 0

 Set up reference vector only.

 mode = 1

 Generate variates using reference vector set up in a prior call to nag_rngs_logarithmic (g05mdc).

 mode = 2

 Set up reference vector and generate variates.

 mode = 3

 Generate variates without using the reference vector.

 Constraint: $0 \leq \text{mode} \leq 3$.

[NP3645/7]

[g05mdc.1]
2: \(a \) – double
 Input

 On entry: the parameter \(a \) of the logarithmic distribution.

 Constraint: \(0.0 < a < 1.0 \).

3: \(n \) – Integer
 Input

 On entry: the number, \(n \), of pseudo-random numbers to be generated.

 Constraint: \(n \geq 1 \).

4: \(x[n] \) – Integer
 Output

 On exit: the \(n \) pseudo-random numbers from the specified logarithmic distribution.

5: \(igen \) – Integer
 Input

 On entry: must contain the identification number for the generator to be used to return a pseudo-
 random number and should remain unchanged following initialisation by a prior call to one of the
 functions nag_rngs_init_repeatable (g05kbc) or nag_rngs_init_nonrepeatable (g05kcc).

6: \(iseed[4] \) – Integer
 Input/Output

 On entry: contains values which define the current state of the selected generator.

 On exit: contains updated values defining the new state of the selected generator.

7: \(r[dim] \) – double
 Input/Output

 Note: the dimension, \(dim \), of the array \(r \) must be at least \(10 + \frac{40}{1-a} \) when \(\text{mode} < 3 \) and at least \(1 \) otherwise.

 On exit: the reference vector.

8: \(\text{fail} \) – NagError *
 Input/Output

 The NAG error parameter (see the Essential Introduction).

6 **Error Indicators and Warnings**

NE_INT

On entry, \(\text{mode} = \langle \text{value} \rangle \).

 Constraint: \(0 \leq \text{mode} \leq 3 \).

 On entry, \(\text{n} = \langle \text{value} \rangle \).

 Constraint: \(\text{n} \geq 1 \).

NE_DIM_INFEASIBLE

\(a \) is such that the reference vector length would exceed integer range. We recommend setting
\(\text{mode} = 3 \). \(a = \langle \text{value} \rangle \).

NE_PREV_CALL

\(a \) is not the same as when \(r \) was set up in a previous call. Previous value of \(a = \langle \text{value} \rangle \), \(a = \langle \text{value} \rangle \).

NE_REAL

On entry, \(a \leq 0.0 \) or \(a \geq 1.0 \): \(a = \langle \text{value} \rangle \).

NE_BAD_PARAM

On entry, parameter \(\langle \text{value} \rangle \) had an illegal value.
NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the call is correct then please consult NAG for assistance.

7 Accuracy

Not applicable.

8 Further Comments

None.

9 Example

The example program prints five pseudo-random integers from a logarithmic distribution with parameter $a = 0.999$, generated by a single call to nag_rngs_logarithmic (g05mdc), after initialisation by nag_rngs_init_repeatable (g05kbc).

9.1 Program Text

```c
/* nag_rngs_logarithmic(g05mdc) Example Program. */
/* * Copyright 2001 Numerical Algorithms Group. */
/* * Mark 7, 2001. */
*/
#include <stdio.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagg05.h>

int main(void)
{
    /* Scalars */
    double a;
    Integer i, igen, n, nr;
    Integer exit_status=0;
    NagError fail;
    /* Arrays */
    double *r=0;
    Integer *x=0;
    Integer iseed[4];

    INIT_FAIL(fail);
    Vprintf("g05mdc Example Program Results\n\n");

    nr = 1;
    n = 10;
    /* Allocate memory */
    if ( !(r = NAG_ALLOC(nr, double)) ||
        !(x = NAG_ALLOC(n, Integer)) )
    {
        Vprintf("Allocation failure\n");
        exit_status = -1;
        goto END;
    }

    /* Set the distribution parameter A */
    a = 0.9999;
    /* Initialise the seed to a repeatable sequence */
    iseed[0] = 1762543;
    iseed[1] = 9324783;
    iseed[2] = 42344;
```

[NP3645/7] g05mdc.3
iseed[3] = 742355;
/* igen identifies the stream. */
igen = 1;
g05kbc(&igen, iseed);
/* Generate integers and store in X */
/* Use MODE=3 because $A > 0.95$ */
g05mdc(3, a, n, x, igen, iseed, r, &fail);
if (fail.code != NE_NOERROR)
{
 Vprintf("Error from g05mdc.\n\n", fail.message);
 exit_status = 1;
 goto END;
}
for (i = 0; i < n; ++i)
{
 Vprintf("%12ld\n", x[i]);
}
END:
if (r) NAG_FREE(r);
if (x) NAG_FREE(x);
return exit_status;

9.2 Program Data
None.

9.3 Program Results
NAG C Library Manual
g05mdc Example Program Results

| 262 |
| 21 |
| 8546 |
| 737 |
| 1 |
| 1 |
| 16 |
| 197 |
| 53 |
| 3 |