nag_rngs_gamma (g05lfc)

1 Purpose

nag_rngs_gamma (g05lfc) generates a vector of pseudo-random numbers taken from a gamma distribution with \(a \) and \(b \).

2 Specification

```c
void nag_rngs_gamma (double a, double b, Integer n, double x[], Integer igen, Integer iseed[], NagError *fail)
```

3 Description

The beta distribution has PDF (probability density function)

\[
f(x) = \frac{1}{b^a \Gamma(a)} x^{a-1} e^{-x/b} \quad \text{if} \quad 0 \leq x; \quad a, b > 0
\]

\[
f(x) = 0 \quad \text{otherwise.}
\]

One of three algorithms is used to generate the variates depending upon the value of \(a \):

(i) If \(a < 1 \), a switching algorithm described by Dagpunar (1988) (called G6) is used. The target distributions are \(f_1(x) = cax^{a-1}/t^a \) and \(f_2(x) = (1-c)e^{-(x-t)} \), where \(c = t(t + ae^{-t}) \), and the switching parameter, \(t \), is taken as \(1/a \). This is similar to Ahrens and Dieter’s GS algorithm (see Ahrens and Dieter (1974)) in which \(t = 1 \);

(ii) If \(a = 1 \), the gamma distribution reduces to the exponential distribution and the method based on the logarithmic transformation of a uniform random variate is used;

(iii) If \(a > 1 \), the algorithm given by Best (1978) is used. This is based on using a Student’s \(t \)-distribution with two degrees of freedom as the target distribution in an envelope rejection method.

One of the initialisation functions nag_rngs_init_repeatable (g05kbc) (for a repeatable sequence if computed sequentially) or nag_rngs_init_nonrepeatable (g05kcc) (for a non-repeatable sequence) must be called prior to the first call to nag_rngs_gamma (g05lfc).

4 References

Best D J (1978) Letter to the Editor Appl. Statist. 29 181

5 Parameters

1: \(a \) – double

 \textit{Input}

 \textit{On entry}: the parameter, \(a \), of the gamma distribution.

 \textit{Constraint}: \(a > 0.0 \).
2: \(b \) – double
 Input
 On entry: the parameter, \(b \), of the gamma distribution.
 Constraint: \(b > 0.0 \).

3: \(n \) – Integer
 Input
 On entry: the number, \(n \), of pseudo-random numbers to be generated.
 Constraint: \(n \geq 0 \).

4: \(x[dim] \) – double
 Output
 Note: the dimension, \(dim \), of the array \(x \) must be at least \(\max(1, n) \).
 On exit: the \(n \) pseudo-random numbers from the specified gamma distribution.

5: \(igen \) – Integer
 Input
 On entry: must contain the identification number for the generator to be used to return a pseudo-
 random number and should remain unchanged following initialisation by a prior call to one of the
 functions nag_rngs_init_repeatable (g05kbc) or nag_rngs_init_nonrepeatable (g05kcc).

6: \(iseed[4] \) – Integer
 Input/Output
 On entry: contains values which define the current state of the selected generator.
 On exit: contains updated values defining the new state of the selected generator.

7: \(fail \) – NagError *
 Input/Output
 The NAG error parameter (see the Essential Introduction).

6 Error Indicators and Warnings

NE_INT
 On entry, \(n = (value) \).
 Constraint: \(n \geq 0 \).

NE_REAL
 On entry, \(b = (value) \).
 Constraint: \(b > 0.0 \).
 On entry, \(a = (value) \).
 Constraint: \(a > 0.0 \).

NE_BAD_PARAM
 On entry, parameter \((value)\) had an illegal value.

NE_INTERNAL_ERROR
 An internal error has occurred in this function. Check the function call and any array sizes. If the
 call is correct then please consult NAG for assistance.

7 Accuracy
 Not applicable.

8 Further Comments
 None.
9 Example

The example program prints a set of five pseudo-random numbers from a gamma distribution with parameters $a = 5.0$ and $b = 1.0$, generated by a single call to nag_rngs_gamma (g05lfc), after initialisation by nag_rngs_init_repeatable (g05kbc).

9.1 Program Text

```c
/* nag_rngs_gamma(g05lfc) Example Program.
 * Copyright 2001 Numerical Algorithms Group.
 */

#include <stdio.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagg05.h>

int main(void)
{
    /* Scalars */
    Integer igen, j, n;
    Integer exit_status=0;
    NagError fail;
    /* Arrays */
    double *x=0;
    Integer iseed[4];
    INIT_FAIL(fail);
    Vprintf("g05lfc Example Program Results

");
    n=5;
    /* Allocate memory */
    if ( !(x = NAG_ALLOC(n, double)) )
    {
        Vprintf("Allocation failure
");
        exit_status = -1;
        goto END;
    }
    /* Initialise the seed to a repeatable sequence */
    iseed[0] = 1762543;
    iseed[1] = 9324783;
    iseed[2] = 42344;
    iseed[3] = 742355;
    /* igen identifies the stream. */
    igen = 1;
    g05kbc(&igen, iseed);
    Vprintf("Gamma Dist --- A=5.0, B=1.0
");
    g05lfc(5.0, 1.0, n, x, igen, iseed, &fail);
    if (fail.code != NE_NOERROR)
    {
        Vprintf("Error from g05lfc.
%s
", fail.message);
        exit_status = 1;
        goto END;
    }
    for (j = 0; j < n; ++j)
    {
        Vprintf("%10.4f\n", x[j]);
    }
END:
    if (x) NAG_FREE(x);
    return exit_status;
}
```
9.2 Program Data
None.

9.3 Program Results

g05lfc Example Program Results

Gamma Dist --- \(A=5.0, B=1.0\)

<p>| |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>3.2806</td>
</tr>
<tr>
<td>4.6512</td>
</tr>
<tr>
<td>4.0683</td>
</tr>
<tr>
<td>4.6252</td>
</tr>
<tr>
<td>7.6745</td>
</tr>
</tbody>
</table>