NAG C Library Function Document

nag_rngs_beta (g05lec)

1 Purpose

nag_rngs_beta (g05lec) generates a vector of pseudo-random numbers taken from a beta distribution with \(a\) and \(b\).

2 Specification

\[
\text{void nag_rngs_beta (double } a, \text{ double } b, \text{ Integer } n, \text{ double } x[], \text{ Integer } igen, \\
\text{ Integer iseed[], NagError *fail)}
\]

3 Description

The beta distribution has PDF (probability density function)

\[
f(x) = \frac{\Gamma(a + b)}{\Gamma(a)\Gamma(b)} x^{a-1}(1 - x)^{b-1} \quad \text{if } 0 \leq x \leq 1; \quad a, b > 0.0,
\]

\[
f(x) = 0 \quad \text{otherwise.}
\]

One of four algorithms is used to generate the variates depending on the values of \(a\) and \(b\). Let \(\alpha\) be the maximum and \(\beta\) be the minimum of \(a\) and \(b\). Then the algorithms are as follows:

(i) If \(\alpha < 0.5\), Jhnk’s algorithm is used, see for example Dagpunar (1988). This generates the beta variate as \(u_1^{\alpha/a} / (u_1^{\alpha/a} + u_2^{\beta/b})\), where \(u_1\) and \(u_2\) are uniformly distributed random variates;

(ii) If \(\beta > 1\), the algorithm BB given by Cheng (1978) is used. This involves the generation of an observation from a beta distribution of the second kind by the envelope rejection method using a log-logistic target distribution and then transforming it to a beta variate;

(iii) If \(\alpha > 1\) and \(\beta < 1\), the switching algorithm given by Atkinson (1979) is used. The two target distributions used are \(f_1(x) = \beta x^\beta\) and \(f_2(x) = \alpha(1 - x)^{\beta-1}\), along with the approximation to the switching parameter of \(t = (1 - \beta)/(\alpha + 1 - \beta)\);

(iv) In all other cases, Cheng’s BC algorithm (see Cheng (1978)) is used with modifications suggested by Dagpunar (1988). This algorithm is similar to BB, used when \(\beta > 1\), but is tuned for small values of \(a\) and \(b\).

One of the initialisation functions nag_rngs_init_repeatable (g05kbc) (for a repeatable sequence if computed sequentially) or nag_rngs_init_nonrepeatable (g05kcc) (for a non-repeatable sequence) must be called prior to the first call to nag_rngs_beta (g05lec).

4 References

Atkinson A C (1979) A family of switching algorithms for the computer generation of beta random variates Biometrika 66 141–5

5 Parameters

1: \(a\) – double
 \textit{Input}
 On entry: the parameter, \(a\), of the beta distribution.
 Constraint: \(a > 0.0\).

2: \(b\) – double
 \textit{Input}
 On entry: the parameter, \(b\), of the beta distribution.
 Constraint: \(b > 0.0\).

3: \(n\) – Integer
 \textit{Input}
 On entry: the number, \(n\), of pseudo-random numbers to be generated.
 Constraint: \(n \geq 0\).

4: \(x[\text{dim}]\) – double
 \textit{Output}
 Note: the dimension, \(\text{dim}\), of the array \(x\) must be at least \(\max(1, n)\).
 On exit: the \(n\) pseudo-random numbers from the specified beta distribution.

5: \(igen\) – Integer
 \textit{Input}
 On entry: must contain the identification number for the generator to be used to return a pseudo-random number and should remain unchanged following initialisation by a prior call to one of the functions nag_rngs_init_repeatable (g05kbc) or nag_rngs_init_nonrepeatable (g05kcc).

6: \(\text{iseed}[4]\) – Integer
 \textit{Input/Output}
 On entry: contains values which define the current state of the selected generator.
 On exit: contains updated values defining the new state of the selected generator.

7: \(\text{fail}\) – NagError *
 \textit{Input/Output}
 The NAG error parameter (see the Essential Introduction).

6 Error Indicators and Warnings

\textbf{NE_INT}
On entry, \(n = \langle\text{value}\rangle\).
Constraint: \(n \geq 0\).

\textbf{NE_REAL}
On entry, \(b = \langle\text{value}\rangle\).
Constraint: \(b > 0.0\).
On entry, \(a = \langle\text{value}\rangle\).
Constraint: \(a > 0.0\).

\textbf{NE_BAD_PARAM}
On entry, parameter \(\langle\text{value}\rangle\) had an illegal value.

\textbf{NE_INTERNAL_ERROR}
An internal error has occurred in this function. Check the function call and any array sizes. If the call is correct then please consult NAG for assistance.
7 Accuracy
Not applicable.

8 Further Comments
To generate an observation, y, from the beta distribution of the second kind from an observation, x, generated by nag_mgs_beta (g05lec) the transformation, $y = x/(1 - x)$, may be used.

9 Example
The example program prints a set of five pseudo-random numbers from a beta distribution with parameters $a = 2.0$ and $b = 2.0$, generated by a single call to nag_mgs_beta (g05lec), after initialisation by nag_mgs_init_repeatable (g05kbc).

9.1 Program Text
/* nag_mgs_beta (g05lec) Example Program. */
/* Copyright 2001 Numerical Algorithms Group. */
/* * Mark 7, 2001. */
*
#include <stdio.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagg05.h>

int main(void)
{
 /* Scalars */
 Integer igen, j, n;
 Integer exit_status=0;
 NagError fail;
 /* Arrays */
 double *x=0;
 Integer iseed[4];

 INIT_FAIL(fail);
 Vprintf("g05lec Example Program Results\n\n");

 n=5;
 /* Allocate memory */
 if (!(x = NAG_ALLOC(n, double)))
 {
 Vprintf("Allocation failure\n");
 exit_status = -1;
 goto END;
 }

 /* Initialise the seed to a repeatable sequence */
 iseed[0] = 1762543;
 iseed[1] = 9324783;
 iseed[2] = 42344;
 iseed[3] = 742355;
 /* igen identifies the stream. */
 igen = 1;
 g05kbc(&igen, iseed);

 Vprintf("Beta Dist --- A=2.0, B=2.0\n");

 g05lec(2.0, 2.0, n, x, igen, iseed, &fail);
 if (fail.code != NE_NOERROR)
 {
 Vprintf("Error from g05lec.\n\n", fail.message);
 }
}
exit_status = 1;
goto END;
}
for (j = 0; j < n; ++j)
{
 Vprintf("%10.4f
", x[j]);
} END:
if (x) NAG_FREE(x);
return exit_status;

9.2 Program Data
None.

9.3 Program Results

g05lec Example Program Results

Beta Dist --- A=2.0, B=2.0
 0.4334
 0.8888
 0.5604
 0.3799
 0.5064