NAG C Library Function Document

nag_ref_vec_multi_normal (g05eac)

1 Purpose

nag_ref_vec_multi_normal (g05eac) sets up a reference vector for a multivariate Normal distribution with mean vector a and variance-covariance matrix C, so that nag_ref_vec_multi_normal (g05eac) may be used to generate pseudo-random vectors.

2 Specification

```c
#include <nag.h>
#include <nag05.h>

void nag_ref_vec_multi_normal(double a[], Integer n, double c[], Integer tdc,
                               double eps, double **r, NagError *fail)
```

3 Description

When the variance-covariance matrix is non-singular (i.e., strictly positive-definite), the distribution has probability density function

$$f(x) = \frac{|C^{-1}|}{(2\pi)^{n/2}} \exp\left\{-\frac{1}{2} (x-a)^T C^{-1} (x-a)\right\}$$

where n is the number of dimensions, C is the variance-covariance matrix, a is the vector of means and x is the vector of positions.

Variance-covariance matrices are symmetric and positive semi-definite. Given such a matrix C, there exists a lower triangular matrix L such that $LL^T = C$. L is not unique, if C is singular.

nag_ref_vec_multi_normal decomposes C to find such an L. It then stores n, a and L in the reference vector r for later use by nag_return_multi_normal (g05ezc). nag_return_multi_normal (g05ezc) generates a vector x of independent standard Normal pseudo-random numbers. It then returns the vector $a + Lx$, which has the required multivariate Normal distribution.

It should be noted that this routine will work with a singular variance-covariance matrix C, provided C is positive semi-definite, despite the fact that the above formula for the probability density function is not valid in that case. Wilkinson (1965) should be consulted if further information is required.

4 Parameters

1. **a[n]** – double

 On entry: the vector of means, a, of the distribution.

2. **n** – Integer

 On entry: the number of dimensions, n, of the distribution.

 Constraint: $n > 0$.

3. **c[n][tdc]** – double

 On entry: the variance-covariance matrix of the distribution. Only the upper triangle need be set.

4. **tdc** – Integer

 On entry: the second dimension of the array c as declared in the function from which nag_ref_vec_multi_normal is called.
Constraint: \(tdc \geq n \).

5: \(\text{eps} \) – double

\emph{On entry:} the maximum error in any element of \(C \), relative to the largest element of \(C \).

\emph{Constraint:} \(0.0 \leq \text{eps} \leq 0.1/n \).

6: \(r \) – double **

\emph{Output}

\emph{On exit:} reference vector for which memory will be allocated internally. This reference vector will subsequently be used by nag_return_multi_normal (g05ezc). If no memory is allocated to \(r \) (e.g., when an input error is detected) then \(r \) will be NULL on return, otherwise the user should use the NAG macro \text{nag_free} to free the storage allocated by \(r \) when it is no longer of use.

7: \(\text{fail} \) – NagError *

\emph{Input/Output}

The NAG error parameter (see the Essential Introduction).

5 \quad \textbf{Error Indicators and Warnings}

\textbf{NE_INT_ARG_LT}

On entry, \(n \) must not be less than 1: \(n = <value> \).

\textbf{NE_2_INT_ARG_LT}

On entry, \(tdc = <value> \) while \(n = <value> \). These parameters must satisfy \(tdc \geq n \).

\textbf{NE_REAL_ARG_LT}

On entry, \(\text{eps} \) must not be less than 0.0: \(\text{eps} = <value> \).

\textbf{NE_2_REAL_ARG_GT}

On entry, \(\text{eps} = <value> \) while \(0.1/n = <value> \). These parameters must satisfy \(\text{eps} \leq 0.1/n \).

\textbf{NE_ALLOC_FAIL}

Memory allocation failed.

\textbf{NE_NOT_POS_SEM_DEF}

Matrix \(C \) is not positive semi-definite.

6 \quad \textbf{Further Comments}

The time taken by the routine is of order \(n^3 \).

It is recommended that the diagonal elements of \(C \) should not differ too widely in order of magnitude. This may be achieved by scaling the variables if necessary. The actual matrix decomposed is \(C + E = LL^T \), where \(E \) is a diagonal matrix with small positive diagonal elements. This ensures that, even when \(C \) is singular, or nearly singular, the Cholesky Factor \(L \) corresponds to a positive-definite variance-covariance matrix that agrees with \(C \) within a tolerance determined by \(\text{eps} \).

6.1 \quad \textbf{Accuracy}

The maximum absolute error in \(LL^T \), and hence in the variance-covariance matrix of the resulting vectors, is less than \((n \times \text{max}(\text{eps}, \varepsilon) + (n + 3)\varepsilon/2) \) times the maximum element of \(C \), where \(\varepsilon \) is the \textbf{machine precision}. Under normal circumstances, the above will be small compared to sampling error.
6.2 References

7 See Also

nag_random_init_repeatable (g05cbc)
nag_random_init_nonrepeatable (g05ccc)
nag_random_normal (g05ddc)
nag_return_multi_normal (g05ezc)

8 Example

The example program prints five pseudo-random observations from a bivariate Normal distribution with
means vector

\[
\begin{bmatrix}
1.0 \\
2.0
\end{bmatrix}
\]

and variance-covariance matrix

\[
\begin{bmatrix}
2.0 & 1.0 \\
1.0 & 3.0
\end{bmatrix}
\]

generated by nag_ref_vec_multi_normal and nag_return_multi_normal (g05ezc) after initialisation by
nag_random_init_repeatable (g05cbc).

8.1 Program Text

/* nag_ref_vec_multi_normal(g05eac) Example Program
 *
 *
 *
 * Mark 3 revised, 1994.
 */

#include <nag.h>
#include <stdio.h>
#include <nag_stdlib.h>
#include <nag05.h>

#define N 2
#define TDC N

main()
{
 Integer i, j;
 double a[N], c[N][TDC], z[N];
 double *r = (double *)0;
 double eps = 0.01;

 Vprintf("g05eac Example Program Results\n");
a[0] = 1.0;
a[1] = 2.0;
c[0][0] = 2.0;
c[1][1] = 3.0;
c[0][1] = 1.0;
c[1][0] = 1.0;
go5cbc((Integer)0);
go5eac(a, (Integer)N, (double*)c, (Integer)TDC,
 eps, &r, NAGERR_DEFAULT);
for (i=1; i<=5; i++)
{
 go5ezc(z, r);
 for (j=0; j<2; j++)
 Vprintf("%10.4f",z[j]);
 Vprintf("\n");
}
NAG_FREE(r);
exit(EXIT_SUCCESS);

8.2 Program Data
None.

8.3 Program Results

 go5eac Example Program Results
 1.7697 4.4481
 3.2678 3.0583
 3.1769 2.3651
 -0.1055 1.8395
 1.2933 -0.1850

8.2 Program Data
None.

8.3 Program Results

 go5eac Example Program Results
 1.7697 4.4481
 3.2678 3.0583
 3.1769 2.3651
 -0.1055 1.8395
 1.2933 -0.1850
