NAG C Library Function Document

nag_anova_confid_interval (g04dbc)

1 Purpose

nag_anova_confid_interval (g04dbc) computes simultaneous confidence intervals for the differences between means. It is intended for use after nag_anova_random (g04bbc) or nag_anova_row_col (g04bcc).

2 Specification

```c
#include <nag.h>
#include <nagg04.h>

void nag_anova_confid_interval (Nag_IntervalType type, Integer nt,
                               const double tmean[], double rdf, const double c[]), Integer tdc,
                               double clevel, doublecil[], double ciu[], Integer isig[]),
                               NagError *fail)
```

3 Description

In the computation of analysis of a designed experiment the first stage is to compute the basic analysis of variance table, the estimate of the error variance (the residual or error mean square), \(\sigma^2 \), the residual degrees of freedom, \(\nu \), and the (variance ratio) \(F \)-statistic for the \(t \) treatments. The second stage of the analysis is to compare the treatment means. If the treatments have no structure, for example the treatments are different varieties, rather than being structured, for example a set of different temperatures, then a multiple comparison procedure can be used.

A multiple comparison procedure looks at all possible pairs of means and either computes confidence intervals for the difference in means or performs a suitable test on the difference. If there are \(t \) treatments then there are \(t(t-1)/2 \) comparisons to be considered. In tests the type 1 error or significance level is the probability that the result is considered to be significant when there is no difference in the means. If the usual \(t \)-test is used with, say, a five percent significance level then the type 1 error for all \(k = t(t-1)/2 \) tests will be much higher. If the tests were independent then if each test is carried out at the 100\(\alpha \) percent level then the overall type 1 error would be \(\alpha^{*} = 1 - (1 - \alpha)^{k} \approx k\alpha \). In order to provide an overall protection the individual tests, or confidence intervals, would have to be carried out at a value of \(\alpha \) such that \(\alpha^{*} \) is the required significance level, e.g., five percent.

The 100\((1 - \alpha)\) percent confidence interval for the difference in two treatment means, \(\hat{\tau}_{i} \) and \(\hat{\tau}_{j} \) is given by

\[
(\hat{\tau}_{i} - \hat{\tau}_{j}) \pm T_{(\alpha,\nu)}\text{se}(\hat{\tau}_{i} - \hat{\tau}_{j}),
\]

where \(\text{se}() \) denotes the standard error of the difference in means and \(T_{(\alpha,\nu)} \) is an appropriate percentage point from a distribution. There are several possible choices for \(T_{(\alpha,\nu)} \). These are:

(a) \(t_{(\alpha/k,\nu)} \), the studentised range statistic. It is the appropriate statistic to compare the largest mean with the smallest mean. This is known as Tukey–Kramer method.

(b) \(t_{(\alpha,\nu)} \), this is the Bonferroni method.

(c) \(t_{(\alpha,\nu)} \), where \(\alpha_{0} = 1 - (1 - \alpha)^{1/k} \), this is known as the Dunn–Sidak method.

(d) \(t_{(\alpha,\nu)} \), this is known as Fisher’s LSD (least significant difference) method. It should only be used if the overall \(F \)-test is significant, the number of treatment comparisons is small and were planned before the analysis.

(e) \(\sqrt{(k-1)F_{1-\alpha,k-1,\nu}} \), where \(F_{1-\alpha,k-1,\nu} \) is the deviate corresponding to a lower tail probability of \(1 - \alpha \) from an \(F \)-distribution with \(k-1 \) and \(\nu \) degrees of freedom. This is Scheffe’s method.

In cases (b), (c) and (d), \(t_{(\alpha,\nu)} \) denotes the \(\alpha \) two-tail significance level for the Student’s \(t \)-distribution with \(\nu \) degrees of freedom, see nag_distrib_students_t (g01bbc).
The Scheffe method is the most conservative, followed closely by the Dunn–Sidak and Tukey–Kramer methods.

To compute a test for the difference between two means the statistic,

\[\frac{\hat{\tau}_i - \hat{\tau}_j}{se(\hat{\tau}_i - \hat{\tau}_j)} \]

is compared with the appropriate value of \(T^*_{(a, u, t)} \).

4 Parameters

1. **type** – Nag_IntervalType

 Input

 On entry: indicates which method is to be used.

 - If **type** = Nag_TukeyInterval, the Tukey–Kramer method is used.
 - If **type** = Nag_BonferroniInterval, the Bonferroni method is used.
 - If **type** = Nag_DunnInterval, the Dunn–Sidak method is used.
 - If **type** = Nag_FisherInterval, the Fisher LSD method is used.
 - If **type** = Nag_ScheffeInterval, the Scheffe’s method is used.

 Constraint: **type** = Nag_TukeyInterval, Nag_BonferroniInterval, Nag_DunnInterval, Nag_FisherInterval or Nag_ScheffeInterval.

2. **nt** – Integer

 Input

 On entry: the number of treatment means, \(t \).

 Constraint: \(nt \geq 2 \).

3. **tmean**[nt] – const double

 Input

 On entry: **tmean**[\(i - 1 \)] contains the treatment means, \(\hat{\tau}_i, i = 1, 2, \ldots, t \).

4. **rdf** – double

 Input

 On entry: the residual degrees of freedom, \(\nu \).

 Constraint: \(rdf \geq 1.0 \).

5. **c**[nt][tdc] – const double

 Input

 On entry: the strictly lower triangular part of **c** must contain the standard errors of the differences between the means as returned by nag_anova_random (g04bbc) and nag_anova_row_col (g04bcc). That is **c**[\(i - 1 \)][\(j - 1 \)], \(i > j \), contains the standard error of the difference between the \(i \)th and \(j \)th mean in **tmean**.

 Constraint: **c**[\(i - 1 \)][\(j - 1 \)] > 0.0, \(i = 2, 3, \ldots, t; j = 1, 2, \ldots, i - 1 \).

6. **tdc** – Integer

 Input

 On entry: the second dimension of the array **c** as declared in the function from which nag_anova_confid_interval is called.

 Constraint: **tdc** ≥ **nt**.

7. **clevel** – double

 Input

 On entry: the required confidence level for the computed intervals, \((1 - \alpha) \).

 Constraint: 0.0 < **clevel** < 1.0.
8: \texttt{cilnt*(nt-1)/2} – double \hspace{1cm} \textit{Output}

On exit: \texttt{cil[(i-1)(i-2)/2 + j - 1]} contains the lower limit to the confidence interval for the difference between \(i\)th and \(j\)th means in \texttt{tmean}, \(i = 2, 3, \ldots, t; j = 1, 2, \ldots, i - 1\).

9: \texttt{ciu[nt*(nt-1)/2]} – double \hspace{1cm} \textit{Output}

On exit: \texttt{ciu[(i-1)(i-2)/2 + j - 1]} contains the upper limit to the confidence interval for the difference between \(i\)th and \(j\)th means in \texttt{tmean}, \(i = 2, 3, \ldots, t; j = 1, 2, \ldots, i - 1\).

10: \texttt{isig[nt*(nt-1)/2]} – Integer \hspace{1cm} \textit{Output}

On exit: \texttt{isig[(i-1)(i-2)/2 + j - 1]} indicates if the difference between \(i\)th and \(j\)th means in \texttt{tmean} is significant, \(i = 2, 3, \ldots, t; j = 1, 2, \ldots, i - 1\). If the difference is significant then the returned value is 1; otherwise the returned value is 0.

11: \texttt{fail} – NagError *

The NAG error parameter (see the Essential Introduction).

5 \hspace{1cm} \textbf{Error Indicators and Warnings}

\textbf{NE_INT_ARG_LT}

On entry, \texttt{nt} must not be less than 2: \texttt{nt} = \textless\texttt{value}\textgreater.

\textbf{NE_2_INT_ARG_LT}

On entry, \texttt{tdc} = \textless\texttt{value}\textgreater while \texttt{nt} = \textless\texttt{value}\textgreater.

These parameters must satisfy \texttt{tdc \geq nt}.

\textbf{NE_REAL_ARG_LT}

On entry, \texttt{rdf} must not be less than 1.0: \texttt{rdf} = \textless\texttt{value}\textgreater.

\textbf{NE_REAL}

On entry, \texttt{clevel} = \textless\texttt{value}\textgreater.

Constraint: 0.0 < \texttt{clevel} < 1.0.

\textbf{NE_BAD_PARAM}

On entry, parameter \texttt{type} had an illegal value.

\textbf{NE_2D_REAL_ARRAY_CONS}

On entry, \texttt{cj[\textless\texttt{value}\textgreater][\textless\texttt{value}\textgreater]} = \textless\texttt{value}\textgreater.

Constraint: \texttt{cj[i][j] > 0.0}, \(i = 1, 2, \ldots, \texttt{nt}-1; j = 0, 1, \ldots, i - 1\).

\textbf{NE_ALLOC_FAIL}

Memory allocation failed.

\textbf{NE_INTERNAL_ERROR}

An internal error has occurred in this function. Check the function call and any array sizes. If the call is correct then please consult NAG for assistance.

\textbf{NE_STUDENTIZED_STAT}

There has been a failure in the computation of the studentized range statistic. Try using a smaller value of \texttt{clevel}.
6 Further Comments
An alternative approach to one used in this routine is the sequential testing of the Student–Newman–Keuls procedure. This, in effect, uses the Tukey–Kramer method but first ordering the treatment means and examining only subsets of the treatment means in which the largest and smallest are significantly different. At each stage the third parameter of the Studentised range statistic is the number of means in the subset rather than the total number of means.

6.1 Accuracy
For the accuracy of the percentage point statistics see nag_deviates_students_t (g01fbc).

6.2 References

7 See Also
nag_deviates_students_t (g01fbc)
nag_anova_random (g04bbc)
nag_anova_row_col (g04bcc)

8 Example
In the example taken from Winer (1970) a completely randomised design with unequal treatment replication is analysed using nag_anova_random (g04bbc) and then confidence intervals are computed by nag_anova_confid_interval using the Tukey–Kramer method.

8.1 Program Text
/* nag_anova_confid_interval (g04dbc) Example Program.
 * Copyright 2000 Numerical Algorithms Group.
 * Mark 6, 2000.
 */

#include <stdio.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nag04.h>

int main (void)
{
#define TABLE(I,J) table[((I)-1)*5 + (J)-1]

 const char *fmt_99998[] = {"%s", "%3.0f ", "%10.1f ", "%10.1f ", "%10.3f ", "%9.4f"};
 char st[1 * 2+1], type[2];
 double *bmean=0, *c=0, *cil=0, *ciu=0, *clevel, *ef=0, gmean, *r=0, rdf;
 double *table=0, *tmean=0, tol, *y=0;
 Integer i, ij, irdf, *irep=0, *isig=0, *it=0, j, n, nblock, nt;
 Integer exit_status=0;
Nag_IntervalType type_enum;
NagError fail;

INIT_FAIL(fail);
Vprintf("g04dbc Example Program Results\n");

/* Skip heading in data file */
Vscanf("%*[\n"]);

Vscanf("%ld %ld ", &n, &nt);
if (!((y = NAG_ALLOC(n, double)))
 || ((it = NAG_ALLOC(n, Integer))
 || (tmean = NAG_ALLOC(nt, double))
 || (table = NAG_ALLOC(4*5, double))
 || (c = NAG_ALLOC(nt*nt, double))
 || (irep = NAG_ALLOC(nt, Integer))
 || (r = NAG_ALLOC(n, double))
 || (ef = NAG_ALLOC(nt, double))
 || (isig = NAG_ALLOC(nt*(nt-1)/2, Integer))
 || (cil = NAG_ALLOC(nt*(nt-1)/2, double))
 || (ciu = NAG_ALLOC(nt*(nt-1)/2, double)))
{
 Vprintf("Allocation failure\n");
 exit_status = 1;
 goto END;
}

for (i = 1; i <= n; ++i)
 Vscanf("%lf ", &y[i - 1]);
for (i = 1; i <= n; ++i)
 Vscanf("%ld ", &it[i - 1]);
tol = 5e-6;
irdf = 0;
nblock = 1;
if (!((bmean = NAG_ALLOC(nblock, double)))
{
 exit_status = -1;
 Vprintf("Allocation failure\n");
 goto END;
}
g04bbc(n, y, Nag_NoBlocks, nbloc, nt, it, &gmean, bmean, tmean, table,
c, nt, irep, r, ef, tol, irdf, &fail);
if (fail.code != NE_NOERROR)
{
 Vprintf("Error from g04bbc.\n\n", fail.message);
 exit_status = -1;
 goto END;
}

Vprintf(" \n\n", "ANOVA table");
Vprintf("\n\n", " Source df SS MS F Prob"),
Vprintf(" Treatments");
for (j = 1; j <= 5; ++j)
 Vprintf(fmt_99998[j], TABLE(2,j));
Vprintf(\"\n\n");
Vprintf(" Residual ");
for (j = 1; j <= 3; ++j)
Vprintf(fmt_99998[j], TABLE(3, j));
Vprintf("\n");
Vprintf(" Total ");
for (j = 1; j <= 2; ++j)
 Vprintf(fmt_99998[j], TABLE(4, j));
Vprintf("\n");
Vprintf("\n Treatment means\n");
Vprintf("\n");
for (j = 1; j <= nt; ++j)
 Vprintf("%8.3f%s", tmean[j - 1], j%8?":\n");
Vprintf("\n");
Vprintf(" Simultaneous Confidence Intervals\n\n");
rdf = TABLE(3, 1);
Vscanf(" %c %lf", type, &clevel);
if (*type == 'T')
 type_enum = Nag_TukeyInterval;
else if (*type == 'B')
 type_enum = Nag_BonferroniInterval;
else if (*type == 'D')
 type_enum = Nag_DunnInterval;
else if (*type == 'L')
 type_enum = Nag_FisherInterval;
else if (*type == 'S')
 type_enum = Nag_ScheffeInterval;
else
 type_enum = (Nag_IntervalType)-999;
g04dbc(type_enum, nt, tmean, rdf, c, nt, clevel, cil, ciu, isig, &fail);
if (fail.code != NE_NOERROR)
{
 Vprintf("Error from g04dbc.\n%s\n", fail.message);
 exit_status=1;
 goto END;
}
star[1] = '*';
star[0] = ' ';
star[2] = '\0';
ij = 0;
for (i = 1; i <= nt; ++i)
{
 for (j = 1; j <= i - 1; ++j)

 ++ij;
 Vprintf(" %2d%2d %10.3f %10.3f %c\n",
 i, j, cil[ij - 1], ciu[ij - 1], star[isig[ij - 1]]);
}
}
END:
if (y) NAG_FREE(y);
if (it) NAG_FREE(it);
if (tmean) NAG_FREE(tmean);
if (table) NAG_FREE(table);
if (c) NAG_FREE(c);
if (irep) NAG_FREE(irep);
if (r) NAG_FREE(r);
if (ef) NAG_FREE(ef);
if (isig) NAG_FREE(isig);
if (cil) NAG_FREE(cil);
if (ciu) NAG_FREE(ciu);
if (bmean) NAG_FREE(bmean);
return exit_status;
}

8.2 Program Data

g04dbc Example Program Data

26 4

3 2 4 3 1 5
7 8 4 10 6
3 2 1 2 4 2 3 1
10 12 8 5 12 10 9
1 1 1 1 1 1
2 2 2 2
3 3 3 3 3 3 3
4 4 4 4 4 4

'T' .95

8.3 Program Results

g04dbc Example Program Results

ANOVA table

<table>
<thead>
<tr>
<th>Source</th>
<th>df</th>
<th>SS</th>
<th>MS</th>
<th>F</th>
<th>Prob</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treatments</td>
<td>3</td>
<td>239.9</td>
<td>80.0</td>
<td>24.029</td>
<td>0.0000</td>
</tr>
<tr>
<td>Residual</td>
<td>22</td>
<td>73.2</td>
<td>3.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>25</td>
<td>313.1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Treatment means

3.000 7.000 2.250 9.429

Simultaneous Confidence Intervals

2 1 0.933 7.067 *
3 1 -3.486 1.986
3 2 -7.638 -1.862 *
4 1 3.610 9.247 *
4 2 -0.538 5.395
4 3 4.557 9.800 *