nag_mv_discrim_mahaldist (g03dbc)

1. **Purpose**

 `nag_mv_discrim_mahaldist (g03dbc)` computes Mahalanobis squared distances for group or pooled variance-covariance matrices. It is intended for use after `nag_mv_discrim (g03dac)`.

2. **Specification**

   ```
   #include <nag.h>
   #include <nag03.h>
   void nag_mv_discrim_mahaldist(Nag_GroupCovars equal, Nag_MahalDist mode,
                                 Integer nvar, Integer ng, double gmean[], Integer tdg,
                                 double gc[], Integer nobs, Integer m, Integer isx[],
                                 double x[], Integer tdx, double d[], Integer tdd,
                                 NagError *fail)
   ```

3. **Description**

 Consider p variables observed on n_g populations or groups. Let \bar{x}_j be the sample mean and S_j the within-group variance-covariance matrix for the jth group and let x_k be the kth sample point in a data set. A measure of the distance of the point from the jth population or group is given by the Mahalanobis distance, D_{kj}^2:

 $$D_{kj}^2 = (x_k - \bar{x}_j)^T S_j^{-1} (x_k - \bar{x}_j).$$

 If the pooled estimated of the variance-covariance matrix S is used rather than the within-group variance-covariance matrices, then the distance is:

 $$D_{kj}^2 = (x_k - \bar{x}_j)^T S^{-1} (x_k - \bar{x}_j).$$

 Instead of using the variance-covariance matrices S and S_j, `nag_mv_discrim_mahaldist` uses the upper triangular matrices R and R_j supplied by `nag_mv_discrim (g03dac)` such that $S = R^T R$ and $S_j = R_j^T R_j$. D_{kj}^2 can then be calculated as $z^T z$ where $R_j z = (x_k - \bar{x}_j)$ or $R z = (x_k - \bar{x}_j)$ as appropriate.

 A particular case is when the distance between the group or population means is to be estimated. The Mahalanobis distance between the ith and jth groups is:

 $$D_{ij}^2 = (\bar{x}_i - \bar{x}_j)^T S_j^{-1} (\bar{x}_i - \bar{x}_j)$$

 or

 $$D_{ij}^2 = (\bar{x}_i - \bar{x}_j)^T S^{-1} (\bar{x}_i - \bar{x}_j).$$

 Note: $D_{jj}^2 = 0$ and that in the case when the pooled variance-covariance matrix is used $D_{ij}^2 = D_{ji}^2$, so in this case only the lower triangular values of D_{ij}^2, $i > j$, are computed.

4. **Parameters**

 equal

 Input: indicates whether or not the within-group variance-covariance matrices are assumed to be equal and the pooled variance-covariance matrix used.

 - If `equal = Nag_EqualCovar` the within-group variance-covariance matrices are assumed equal and the matrix R stored in the first $p(p + 1)/2$ elements of `gc` is used.
 - If `equal = Nag_NotEqualCovar` the within-group variance-covariance matrices are assumed to be unequal and the matrices R_j, for $j = 1, 2, \ldots, n_g$, stored in the remainder of `gc` are used.

 Constraint: `equal = Nag_EqualCovar` or `Nag_NotEqualCovar`.
mode
Input: indicates whether distances from sample points are to be calculated or distances between the group means.
 If **mode = Nag_SamplePoints** the distances between the sample points given in \(x \) and the group means are calculated.
 If **mode = Nag_GroupMeans** the distances between the group means will be calculated.
Constraint: **mode = Nag_SamplePoints** or **Nag_GroupMeans**.

nvar
Input: the number of variables, \(p \), in the variance-covariance matrices as specified to \n\n\text{nag_mv_discrim (g03dac)}.
Constraint: \(nvar \geq 1 \).

ng
Input: the number of groups, \(n_g \).
Constraint: \(ng \geq 2 \).

gmean[ng][tdg]
Input: the \(j \)th row of \(gmean \) contains the means of the \(p \) selected variables for the \(j \)th group, for \(j = 1, 2, \ldots, n_g \). These are returned by \n\n\text{nag_mv_discrim (g03dac)}.

tdg
Input: the last dimension of the array \(gmean \) as declared in the calling program.
Constraint: \(tdg \geq nvar \).

*gc[(ng+1)*nvar+(nvar+1)/2]*
Input: the first \(p(p+1)/2 \) elements of \(gc \) should contain the upper triangular matrix \(R \) and the next \(n_g \) blocks of \(p(p+1)/2 \) elements should contain the upper triangular matrices \(R_j \). All matrices must be stored packed by column. These matrices are returned by \n\n\text{nag_mv_discrim (g03dac)}.
If equal = **Nag_EqualCovar** only the first \(p(p+1)/2 \) elements are referenced, if equal = **Nag_NotEqualCovar** only the elements \(p(p+1)/2 \) to \((n_g+1)p(p+1)/2-1 \) are referenced.
Constraints:
 If equal = **Nag_EqualCovar** the diagonal elements of \(R \neq 0 \).
 If equal = **Nag_NotEqualCovar** the diagonal elements of the \(R_j \neq 0 \), for \(j = 1, 2, \ldots, ng \).

nobs
Input: if **mode = Nag_SamplePoints** the number of sample points in \(x \) for which distances are to be calculated. If **mode = Nag_GroupMeans**, \(nobs \) is not referenced.
Constraint: if **mode = Nag_SamplePoints**, \(nobs \geq 1 \).

m
Input: if **mode = Nag_SamplePoints** the number of variables in the data array \(x \). If **mode = Nag_GroupMeans**, then \(m \) is not referenced.
Constraint: if **mode = Nag_SamplePoints**, \(m \geq nvar \).

isx[m]
Input: if **mode = Nag_SamplePoints**, \(isx[l-1] \) indicates if the \(l \)th variable in \(x \) is to be included in the distance calculations. If \(isx[l-1] > 0 \), the \(l \)th variable is included, for \(l = 1, 2, \ldots, m \); otherwise the \(l \)th variable is not referenced.
If **mode = Nag_GroupMeans**, then \(isx \) is not referenced and may be set to the NULL pointer (Integer *)0.
Constraint: if **mode = Nag_SamplePoints**, \(isx[l-1] > 0 \) for \(nvar \) values of \(l \).

x[nobs][tdx]
Input: if **mode = Nag_SamplePoints** the \(k \)th row of \(x \) must contain \(x_k \). That is, \(x[k-1][l-1] \) must contain the \(k \)th sample value for the \(l \)th variable for \(k = 1, 2, \ldots, nobs; \ l = 1, 2, \ldots, m \). Otherwise \(x \) is not referenced and may be set to the NULL pointer (double *)0.
These parameters must satisfy
\[\text{tdx} \geq \max(1, m). \]

\[d[\text{dim}][\text{tdd}] \]
Output: the squared distances.
If \text{mode} = \text{Nag Sample Points}, \(d[k - 1][j - 1] \) contains the squared distance of the \(k \)th sample point from the \(j \)th group mean, \(D_{ki}^2 \), for \(k = 1, 2, \ldots, \text{nobs} \); \(j = 1, 2, \ldots, n_g \).
If \text{mode} = \text{Nag Group Means} and \text{equal} = \text{Nag Not Equal Covar}, \(d[i - 1][j - 1] \) contains the squared distance between the \(i \)th mean and the \(j \)th mean, \(D_{ij}^2 \), for \(i = 1, 2, \ldots, n_g \); \(j = 1, 2, \ldots, i - 1 \).
The elements \(d[i - 1][i - 1] \) are not referenced for \(i = 1, 2, \ldots, n_g \).
If \text{mode} = \text{Nag Group Means} and \text{equal} = \text{Nag Equal Covar}, \(d[i - 1][j - 1] \) contains the squared distance between the \(i \)th mean and the \(j \)th mean, \(D_{ij}^2 \), for \(i = 1, 2, \ldots, n_g \); \(j = 1, 2, \ldots, i - 1 \). Since \(D_{ij} = D_{ji} \), the elements \(d[i - 1][j - 1] \) are not referenced, for \(i = 1, 2, \ldots, n_g \); \(j = i, i + 1, \ldots, n_g \).
Constraint: \(\text{dim} \geq \max(1, n_g) \) if \(\text{mode} = \text{Nag Sample Points} \), otherwise \(\text{dim} \geq \text{ng} \).

\[\text{tdd} \]
Input: the last dimension of the array \(dd \) as declared in the calling program.
Constraint: \(\text{tdd} \geq \text{ng} \).

\[\text{fail} \]
The NAG error parameter, see the Essential Introduction to the NAG C Library.

5. Error Indications and Warnings

\text{NE Bad Param}
On entry, parameter \text{equal} had an illegal value.
On entry, parameter \text{mode} had an illegal value.

\text{NE Int Arg Lt}
On entry, \text{nvar} must not be less than 1: \(\text{nvar} = \langle \text{value} \rangle \).
On entry, \(\text{ng} \) must not be less than 2: \(\text{ng} = \langle \text{value} \rangle \).

\text{NE 2 Int Arg Lt}
On entry, \(\text{tdg} = \langle \text{value} \rangle \) while \text{nvar} = \(\langle \text{value} \rangle \).
These parameters must satisfy \(\text{tdg} \geq \text{nvar} \).
On entry, \(\text{tdd} = \langle \text{value} \rangle \) while \(\text{ng} = \langle \text{value} \rangle \).
These parameters must satisfy \(\text{tdd} \geq \text{ng} \).

\text{NE Int Arg Enum Cons}
On entry, \(\text{nobs} = \langle \text{value} \rangle \) while \text{mode} = \text{Nag Sample Points}.
These parameters must satisfy \(\text{nobs} \geq 1 \) when \text{mode} = \text{Nag Sample Points}.

\text{NE 2 Int Arg Enum Cons}
On entry, \(\text{m} = \langle \text{value} \rangle \) while \text{nvar} = \(\langle \text{value} \rangle \) and \text{mode} = \text{Nag Sample Points}.
These parameters must satisfy \(\text{m} \geq \text{nvar} \) when \text{mode} = \text{Nag Sample Points}.
On entry, \(\text{tdx} = \langle \text{value} \rangle \) while \(\text{m} = \langle \text{value} \rangle \) and \text{mode} = \text{Nag Sample Points}.
These parameters must satisfy \(\text{tdx} \geq \max(1, m) \) when \text{mode} = \text{Nag Sample Points}.

\text{NE Var Incl Cond}
The number of variables, \text{nvar} in the analysis = \(\langle \text{value} \rangle \), while number of variables included in the analysis via array \text{isx} = \(\langle \text{value} \rangle \).
Constraint: These two numbers must be the same when \text{mode} = \text{Nag Sample Points}.

\text{NE Diag 0 Cond}
A diagonal element of \(R \) is zero when \text{equal} = \text{Nag Equal Covar}.

\text{NE Diag 0 L Cond}
A diagonal element of \(R \) is zero for some \(j \), when \text{equal} = \text{Nag Not Equal Covar}.
6. Further Comments

If the distances are to be used for discrimination, see also nag_mv_discrim_group (g03dcc).

6.1. Accuracy

The accuracy will depend upon the accuracy of the input R or R_j matrices.

6.2. References

7. See Also

nag_mv_discrim (g03dac)
nag_mv_discrim_group (g03dcc)

8. Example

The data, taken from Aitchison and Dunsmore (1975), is concerned with the diagnosis of three ‘types’ of Cushing’s syndrome. The variables are the logarithms of the urinary excretion rates (mg/24hr) of two steroid metabolites. Observations for a total of 21 patients are input and the group means and R matrices are computed by nag_mv_discrim (g03dac). A further six observations of unknown type are input, and the distances from the group means of the 21 patients of known type are computed under the assumption that the within-group variance-covariance matrices are not equal. These results are printed and indicate that the first four are close to one of the groups while observations 5 and 6 are some distance from any group.

8.1. Program Text

```c
#include <nag.h>
#include <stdio.h>
#include <nag_stdlib.h>
#include <nagg03.h>

#define NMAX 21
#define MMAX 2
#define GPMAX 3

main()
{
    double d[NMAX][GPMAX], det[GPMAX],
    gc[(GPMAX+1)*MMAX*(MMAX+1)/2], gmean[GPMAX][MMAX],
    wt[NMAX], x[NMAX][MMAX];
    double stat;
    double df;
    double sig;
    double *wtptr=0;
```
Integer nobs, nvar;
Integer ing[NMAX], isx[MMAX], nig[GPMAX];
Integer i, j, m, n;
Integer ng;
Integer tdd=GPMAX, tdgmean=MMAX, tdx=MMAX;

char char_equal[2];
char weight[2];
Nag_GroupCovars equal;

Vprintf("g03dbc Example Program Results\n\n");

/* Skip headings in data file */
Vscanf("%*[\n"]");

Vscanf("%ld",&n);
Vscanf("%ld",&m);
Vscanf("%ld",&nvar);
Vscanf("%ld",&ng);
Vscanf("%s",weight);

if (n <= NMAX && m <= MMAX)
{
 if (*weight == 'W')
 {
 for (i=0; i<n; ++i)
 {
 for (j = 0; j < m; ++j)
 {
 Vscanf("%lf",&x[i][j]);
 Vscanf("%ld",&ing[i]);
 Vscanf("%lf",&wt[i]);
 }
 wtptr = wt;
 }
 } else {
 for (i = 0; i < n; ++i)
 {
 for (j = 0; j < m; ++j)
 {
 Vscanf("%lf",&x[i][j]);
 Vscanf("%ld",&ing[i]);
 }
 }
 }
 for (j = 0; j < m; ++j)
 Vscanf("%ld",&isx[j]);
 g03dac(n, m, (double *)&x, tdx, isx, nvar, ing, ng, wtptr, nig,
 (double *)&gmean, tdgmean, det, gc, &stat, &df, &sig, NAGERR_DEFAULT);
 Vscanf("%ld",&nobs);
 Vscanf("%s",char_equal);
 if (nobs <= NMAX)
 {
 for (i = 0; i < nobs; ++i)
 {
 for (j = 0; j < m; ++j)
 {
 Vscanf("%lf",&x[i][j]);
 }
 if (*char_equal == 'E')
 {
 equal = Nag_EqualCovar;
 }
 else if (*char_equal == 'U')
 {
 equal = Nag_NotEqualCovar;
 }
 }
 g03dbc(equal, Nag_SamplePoints, nvar, ng, (double *)&gmean, tdgmean, gc,
 nobs, m, isx, (double *)&x, tdx, (double *)&d, tdd, NAGERR_DEFAULT);
 Vprintf("\n Obs Distances\n\n");
 for (i = 0; i < nobs; ++i)

8.2. Program Data

g03dbc Example Program Data

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>21</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>U</td>
<td></td>
</tr>
<tr>
<td>1.1314</td>
<td>2.4596</td>
<td>1</td>
</tr>
<tr>
<td>1.0986</td>
<td>0.2624</td>
<td>1</td>
</tr>
<tr>
<td>0.6419</td>
<td>-2.3026</td>
<td>1</td>
</tr>
<tr>
<td>1.3350</td>
<td>-3.2189</td>
<td>1</td>
</tr>
<tr>
<td>1.4110</td>
<td>0.0953</td>
<td>1</td>
</tr>
<tr>
<td>0.6419</td>
<td>-0.9163</td>
<td>1</td>
</tr>
<tr>
<td>2.1163</td>
<td>0.0000</td>
<td>2</td>
</tr>
<tr>
<td>1.3350</td>
<td>-1.6094</td>
<td>2</td>
</tr>
<tr>
<td>1.3610</td>
<td>-0.5108</td>
<td>2</td>
</tr>
<tr>
<td>2.0541</td>
<td>0.1823</td>
<td>2</td>
</tr>
<tr>
<td>2.2083</td>
<td>-0.5108</td>
<td>2</td>
</tr>
<tr>
<td>2.7344</td>
<td>1.2809</td>
<td>2</td>
</tr>
<tr>
<td>2.0412</td>
<td>0.4700</td>
<td>2</td>
</tr>
<tr>
<td>1.8718</td>
<td>-0.9163</td>
<td>2</td>
</tr>
<tr>
<td>1.7405</td>
<td>-0.9163</td>
<td>2</td>
</tr>
<tr>
<td>2.6101</td>
<td>0.4700</td>
<td>2</td>
</tr>
<tr>
<td>2.3224</td>
<td>1.8563</td>
<td>3</td>
</tr>
<tr>
<td>2.2192</td>
<td>2.0669</td>
<td>3</td>
</tr>
<tr>
<td>2.2618</td>
<td>1.1314</td>
<td>3</td>
</tr>
<tr>
<td>3.9853</td>
<td>0.9163</td>
<td>3</td>
</tr>
<tr>
<td>2.7600</td>
<td>2.0281</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>U</td>
<td></td>
</tr>
<tr>
<td>1.6292</td>
<td>-0.9163</td>
<td></td>
</tr>
<tr>
<td>2.5572</td>
<td>1.6094</td>
<td></td>
</tr>
<tr>
<td>2.5649</td>
<td>-0.2231</td>
<td></td>
</tr>
<tr>
<td>0.9555</td>
<td>-2.3026</td>
<td></td>
</tr>
<tr>
<td>3.4012</td>
<td>-2.3026</td>
<td></td>
</tr>
<tr>
<td>3.0204</td>
<td>-0.2231</td>
<td></td>
</tr>
</tbody>
</table>

8.3. Program Results

g03dbc Example Program Results

<table>
<thead>
<tr>
<th>Obs</th>
<th>Distances</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3.339</td>
<td>0.752</td>
<td>50.928</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>20.777</td>
<td>5.656</td>
<td>0.060</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>21.363</td>
<td>4.841</td>
<td>19.498</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0.718</td>
<td>6.280</td>
<td>124.732</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>55.000</td>
<td>88.860</td>
<td>71.785</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>38.170</td>
<td>15.785</td>
<td>15.749</td>
<td></td>
</tr>
</tbody>
</table>