nag_mv_canon_var (g03acc)

1. Purpose

nag_mv_canon_var (g03acc) performs a canonical variate (canonical discrimination) analysis.

2. Specification

```c
#include <nag.h>
#include <nagg03.h>

void nag_mv_canon_var(Nag_Weightstype weight, Integer n, Integer m, double x[],
                      Integer tdx, Integer isx[], Integer nx, Integer ing[], Integer ng,
                      double wt[], Integer nig[], double cvm[], Integer tdcvm,
                      double e[], Integer tde, Integer *ncv, double cvx[],
                      Integer tdcvx, double tol, Integer *irankx, NagError *fail)
```

3. Description

Let a sample of n observations on n_x variables in a data matrix come from n_g groups with $n_1, n_2, \ldots, n_{n_g}$ observations in each group, $\sum n_i = n$. Canonical variate analysis finds the linear combination of the n_x variables that maximizes the ratio of between-group to within-group variation. The variables formed, the canonical variates can then be used to discriminate between groups.

The canonical variates can be calculated from the eigenvectors of the within-group sums of squares and cross-products matrix. However, nag_mv_canon_var calculates the canonical variates by means of a singular value decomposition (SVD) of a matrix V. Let the data matrix with variable (column) means subtracted be X, and let its rank be k; then the k by $(n_g - 1)$ matrix V is given by:

$$ V = Q_g^T Q_g $$

where Q_g is an n by $(n_g - 1)$ orthogonal matrix that defines the groups and Q_X is the first k rows of the orthogonal matrix Q either from the QR decomposition of X:

$$ X = QR $$

if X is of full column rank, i.e., $k = n_x$, else from the SVD of X:

$$ X = QDP^T. $$

Let the SVD of V be:

$$ V = U_g \Delta U_g^T $$

then the non-zero elements of the diagonal matrix Δ, δ_i, for $i = 1, 2, \ldots, l$, are the l canonical correlations associated with the l canonical variates, where $l = \min(k, n_g)$.

The eigenvalues, λ_i^2, of the within-group sums of squares matrix are given by:

$$ \lambda_i^2 = \frac{\delta_i^2}{1 - \delta_i^2}. $$

and the value of $\pi_i = \lambda_i^2 / \sum \lambda_i^2$ gives the proportion of variation explained by the ith canonical variate. The values of the π_i's give an indication as to how many canonical variates are needed to adequately describe the data, i.e., the dimensionality of the problem.

To test for a significant dimensionality greater than i the χ^2 statistic:

$$ (n - 1 - n_g - \frac{i}{2}(k - n_g)) \sum_{j=i+1}^{l} \log(1 + \lambda_j^2) $$
can be used. This is asymptotically distributed as a χ^2 distribution with $(k - i)(n_g - 1 - i)$ degrees of freedom. If the test for $i = h$ is not significant, then the remaining tests for $i > h$ should be ignored.

The loadings for the canonical variates are calculated from the matrix U_x. This matrix is scaled so that the canonical variates have unit within group variance.

In addition to the canonical variates loadings the means for each canonical variate are calculated for each group.

Weights can be used with the analysis, in which case the weighted means are subtracted from each column and then each row is scaled by an amount $\sqrt{w_i}$, where w_i is the weight for the ith observation (row).

4. Parameters

weight
Input: indicates the type of weights to be used in the analysis.

If weight = Nag_NoWeights, then no weights are used.

If weight = Nag_Weightsfreq, then the weights are treated as frequencies and the effective number of observations is the sum of the weights.

If weight = Nag_Weightsvar, then the weights are treated as being inversely proportional to the variance of the observations and the effective number of observations is the number of observations with non-zero weights.

Constraint: weight = Nag_NoWeights, Nag_Weightsfreq or Nag_Weightsvar.

n
Input: the number of observations, n.
Constraint: $n \geq nx + ng$.

m
Input: the total number of variables, m.
Constraint: $m \geq nx$.

x[n][tdx]
Input: $x[i-1][j-1]$ must contain the ith observation for the jth variable, for $i = 1, 2, \ldots, n$; $j = 1, 2, \ldots, m$.

tdx
Input: the last dimension of the array x as declared in the calling program.
Constraint: $tdx \geq m$.

isx[m]
Input: isx[j-1] indicates whether or not the jth variable is to be included in the analysis.
If isx[j-1] > 0, then the variable contained in the jth column of x is included in the canonical variate analysis, for $j = 1, 2, \ldots, m$.
Constraint: isx[j-1] > 0 for nx values of j.

nx
Input: the number of variables in the analysis, n_x.
Constraint: $nx \geq 1$.

ing[n]
Input: ing[i-1] indicates which group the ith observation is in, for $i = 1, 2, \ldots, n$. The effective number of groups is the number of groups with non-zero membership.
Constraint: $1 \leq ing[i-1] \leq ng$, for $i = 1, 2, \ldots, n$.

ng
Input: The number of groups, n_g.
Constraint: $ng \geq 2$.
In multivariate methods, the weight array `wt` is used to specify weights for observations. If `weight` is set to `Nag_Weightsfreq` or `Nag_Weightsvar`, then the elements of `wt` must contain the weights to be used in the analysis. If `wt[i - 1] = 0.0` then the `i`th observation is not included in the analysis. Constraints:

\[
\sum_{i=1}^{n} wt[i - 1] \geq nx + \text{effective number of groups.}
\]

Note: If `weight` is set to `Nag_NoWeights`, then `wt` is not referenced and may be set to the null pointer `NULL`, i.e. `(double *)0`.

The output arrays include:

- `nig`: The number of observations in group `j`, for `j = 1, 2, \ldots, ng`.
- `cvm`: The mean of the `j`th canonical variate for the `i`th group, for `i = 1, 2, \ldots, ng`; `j = 1, 2, \ldots, l`; the remaining columns, if any, are used as workspace.
- `e`: The canonical correlations, `\delta_i`, for `i = 1, 2, \ldots, l`.
- `irankx`: The rank of the dependent variables. If the variables are of full rank then `irankx = nx`. If the variables are not of full rank then `irankx` is an estimate of the rank of the dependent variables. `irankx` is calculated as the number of singular values greater than `tol` times the largest singular value.
fail

The NAG error parameter, see the Essential Introduction to the NAG C Library.

5. Error Indications and Warnings

NE_BAD_PARAM
On entry, parameter weight had an illegal value.

NE_INT_ARG_LT
On entry, nx must not be less than 1: nx = ⟨value⟩.
On entry, ng must not be less than 2: ng = ⟨value⟩.
On entry, tde must not be less than 6: tde = ⟨value⟩.

NE_REAL_ARG_LT
On entry, tol must not be less than 0:
0: tol = ⟨value⟩.

NE_2_INT_ARG_LT
On entry, m = ⟨value⟩ while nx = ⟨value⟩.
These parameters must satisfy m ≥ nx.
On entry, tdx = ⟨value⟩ while m = ⟨value⟩.
These parameters must satisfy tdx ≥ m.
On entry, tdcvx = ⟨value⟩ while ng = ⟨value⟩.
These parameters must satisfy tdcvx ≥ ng − 1.
On entry, tdcvm = ⟨value⟩ while nx = ⟨value⟩.
These parameters must satisfy tdcvm ≥ nx.

NE_3_INT_ARG_CONS
On entry, n = ⟨value⟩, nx = ⟨value⟩ and ng = ⟨value⟩.
These parameters must satisfy n ≥ nx + ng.

NE_INTARR_INT
On entry, ing[⟨value⟩] = ⟨value⟩, ng = ⟨value⟩.
Constraint: 1 ≤ ing[i − 1] ≤ ng, i = 1, 2, ..., n.

NE_WT.ARGS
The wt array argument must not be NULL when the weight argument indicates weights.

NE_NEG_WEIGHT_ELEMENT
On entry, wt[⟨value⟩] = ⟨value⟩.
Constraint: When referenced, all elements of wt must be non-negative.

NE_VAR_INCL_INDICATED
The number of variables, nx in the analysis = ⟨value⟩, while number of variables included in the analysis via array isx = ⟨value⟩.
Constraint: these two numbers must be the same.

NE_SVD_NOT_CONV
The singular value decomposition has failed to converge.
This is an unlikely error exit.

NE_CANON_CORR_1
A canonical correlation is equal to one.
This will happen if the variables provide an exact indication as to which group every observation is allocated.

NE_GROUPS
Either the effective number of groups is less than two or the effective number of groups plus the number of variables, nx is greater than the the effective number of observations.

NE_RANK_ZERO
The rank of the variables is zero.
This will happen if all the variables are constants.

NE_ALLOC_FAIL
Memory allocation failed.
NE_INTERNAL_ERROR
An internal error has occurred in this function. Check the function call and any array sizes.
If the call is correct then please consult NAG for assistance.

6. Further Comments

6.1. Accuracy
As the computation involves the use of orthogonal matrices and a singular value decomposition
rather than the traditional computing of a sum of squares matrix and the use of an eigenvalue
decomposition, nag_mv_canon_var should be less affected by ill conditioned problems.

6.2. References
Hammarling S (1985) The singular value decomposition in multivariate statistics SIGNUM 20(3)
2–25.
Edition).

7. See Also
None.

8. Example
A sample of nine observations, each consisting of three variables plus group indicator, is read in.
There are three groups. An unweighted canonical variate analysis is performed and the results
printed.

8.1. Program Text
/* nag_mv_canon_var (g03acc) Example Program.
 * * Mark 5, 1998.
 * */
#include <nag.h>
#include <stdio.h>
#include <nag_stdlib.h>
#include <nagg03.h>

#define NMAX 9
#define MMAX 3
#define TDE 6

main()
{

double e[MMAX][6];
double x[NMAX][MMAX];
double wt[NMAX];
double cvm[MMAX][MMAX], tol, cvx[MMAX][MMAX];

Integer i, j, m, n;
Integer ng;
Integer nx;
Integer ing[NMAX], nig[MMAX], ncv;
Integer irx, iss[2*MMAX];
Integer tdx=MMAX, tdc=MMAX, tde=TDE;

char wtchar[2];
Nag_Weightstype weight;
Vprintf("g03acc Example Program Results\n\n");

/* Skip heading in data file */
Vscanf("%*[\-\n]");

Vscanf("%ld",&n);
Vscanf("%ld",&m);
Vscanf("%ld",&nx);
Vscanf("%ld",&ng);
Vscanf("%s",wtchar);
if (n <= NMAX && m <= MMAX)
{
 if (*wtchar == 'W' || *wtchar == 'V')
 {
 for (i = 0; i < n; ++i)
 {
 for (j = 0; j < m; ++j)
 {
 Vscanf("%lf",&x[i][j]);
 Vscanf("%lf",&wt[i]);
 Vscanf("%ld",&ing[i]);
 }
 if (*wtchar == 'W')
 weight = Nag_Weightsfreq;
 else
 weight = Nag_Weightsvar;
 }
 else
 {
 for (i = 0; i < n; ++i)
 {
 for (j = 0; j < m; ++j)
 {
 Vscanf("%lf",&x[i][j]);
 Vscanf("%ld",&ing[i]);
 }
 weight = Nag_NoWeights;
 }
 }
 for (j = 0; j < m; ++j)
 Vscanf("%ld",&isx[j]);
 }
}

if (weight == Nag_Weightsfreq) { weight = Nag_Weightsvar; }
if (weight == Nag_NoWeights) { weight = Nag_NoWeights; }

for (i = 0; i < ng; ++i)
{
 for (j = 0; j < ncv; ++j)
 {
 Vprintf("%9.4f",cvx[i][j]);
 Vprintf("\n");
 }
}

exit(EXIT_SUCCESS);
execute
else
{
 Vprintf("Incorrect input value of n or m.\n");
 exit(EXIT_FAILURE);
}

8.2. Program Data

g03acc Example Program Data
 9 3 3 3 U
 13.3 10.6 21.2 1
 13.6 10.2 21.0 2
 14.2 10.7 21.1 3
 13.4 9.4 21.0 1
 13.2 9.6 20.1 2
 13.9 10.4 19.8 3
 12.9 10.0 20.5 1
 12.2 9.9 20.7 2
 13.9 11.0 19.1 3
 1 1 1

8.3. Program Results

g03acc Example Program Results

Rank of x = 3

Canonical Eigenvalues Percentage CHISQ DF SIG
Correlations Variation
 0.8826 3.5238 0.9795 7.9032 6.0000 0.2453
 0.2623 0.0739 0.0205 0.3564 2.0000 0.8368

Canonical Coefficients for X
 -1.7070 0.7277
 -1.3481 0.3138
 0.9327 1.2199

Canonical variate means
 0.9841 0.2797
 1.1805 -0.2632
 -2.1646 -0.0164