NAG C Library Function Document

nag_robust_m_corr_user_fn (g02hlc)

1 Purpose

nag_robust_m_corr_user_fn (g02hlc) calculates a robust estimate of the covariance matrix for user-supplied weight functions and their derivatives.

2 Specification

```c
void nag_robust_m_corr_user_fn (Nag_OrderType order,
    void (*ucv)(double t, double *u, double *ud, double *w, double *wd,
                Nag_Comm *comm),
    Integer indm, Integer n, Integer m, const double x[], Integer pdx,
    double cov[], double a[], double wt[], double theta[], double bl, double bd,
    Integer maxit, Integer nitmon, const char *outfile, double tol,
    Integer *nit, Nag_Comm *comm, NagError *fail)
```

3 Description

For a set of n observations on m variables in a matrix X, a robust estimate of the covariance matrix, C, and a robust estimate of location, θ, are given by:

$$ C = \tau^2 (A^T A)^{-1}, $$

where τ^2 is a correction factor and A is a lower triangular matrix found as the solution to the following equations.

$$ z_i = A(x_i - \theta) $$

$$ \frac{1}{n} \sum_{i=1}^{n} w(\|z_i\|_2) z_i = 0 $$

and

$$ \frac{1}{n} \sum_{i=1}^{n} u(\|z_i\|_2) z_i z_i^T - v(\|z_i\|_2) I = 0, $$

where x_i is a vector of length m containing the elements of the ith row of X,

z_i is a vector of length m,

I is the identity matrix and 0 is the zero matrix,

and w and u are suitable functions.

nag_robust_m_corr_user_fn (g02hlc) covers two situations:

(i) $v(t) = 1$ for all t,

(ii) $v(t) = u(t)$.

The robust covariance matrix may be calculated from a weighted sum of squares and cross-products matrix about θ using weights $wt_i = u(\|z_i\|)$. In case (i) a divisor of n is used and in case (ii) a divisor of $\sum_{i=1}^{n} wt_i$ is used. If $u(\cdot) = \sqrt{u(\cdot)}$, then the robust covariance matrix can be calculated by scaling each row of X by $\sqrt{wt_i}$ and calculating an unweighted covariance matrix about θ.

In order to make the estimate asymptotically unbiased under a Normal model a correction factor, τ^2, is needed. The value of the correction factor will depend on the functions employed (see Huber (1981) and Marazzi (1987a)).
nag_robust_m_corr_user_fn (g02hlc) finds A using the iterative procedure as given by Huber.

$$A_k = (S_k + I)A_{k-1}$$

and

$$\theta_{jk} = \frac{b_j}{D_1} + \theta_{jk-1},$$

where $S_k = (s_{jl})$, for $j, l = 1, 2, \ldots, m$ is a lower triangular matrix such that:

$$s_{jl} = \begin{cases} -\min\{\max(h_{jl}/D_3, -BL), BL\}, & j > l \\ -\min\{\max((h_{j\ell}/(2D_3 - D_4/D_2)), -BD, BD), & j = l \end{cases}$$

where

$$D_1 = \sum_{i=1}^n \left\{ u(||z_i||_2) + \frac{1}{m} w'(||z_i||_2)||z_i||_2 \right\}$$

$$D_2 = \sum_{i=1}^n \left\{ \frac{1}{3} u'(||z_i||_2)||z_i||_2 + 2u(||z_i||_2)||z_i||_2 - u'(||z_i||_2) \right\}||z_i||_2$$

$$D_3 = \frac{1}{m+2} \sum_{i=1}^n \left\{ \frac{1}{6} u'(||z_i||_2)||z_i||_2 + 2u(||z_i||_2) + u(||z_i||_2) \right\}||z_i||_2^2$$

$$D_4 = \sum_{i=1}^n \left\{ \frac{1}{6} u(||z_i||_2)||z_i||_2^2 - v(||z_i||_2) \right\}$$

$$h_{jl} = \sum_{i=1}^n u(||z_i||_2)z_{ij}z_{il}, \text{ for } j > l$$

$$h_{jj} = \sum_{i=1}^n u(||z_i||_2)(z_{ij}^2 - ||z_{ij}||_2^2/m)$$

$$b_j = \sum_{i=1}^n w(||z_i||_2)$$

and BD and BL are suitable bounds.

nag_robust_m_corr_user_fn (g02hlc) is based on routines in ROBETH; see Marazzi (1987a).

4 References

5 Parameters

1:

order – Nag_OrderType

On entry: the order parameter specifies the two-dimensional storage scheme being used, i.e., row-major ordering or column-major ordering. C language defined storage is specified by order = Nag_RowMajor. See Section 2.2.1.4 of the Essential Introduction for a more detailed explanation of the use of this parameter.

Constraint: order = Nag_RowMajor or Nag_ColMajor.

2:

ucv – Function

ucv must return the values of the functions u and w and their derivatives for a given value of its argument.

Its specification is:

```c
void ucv (double t, double *u, double *ud, double *w, double *wd, Nag_Comm *comm)
```


1: \(t \) – double
 \textit{Input}
 \textit{On entry:} the argument for which the functions \(u \) and \(w \) must be evaluated.

2: \(u \) – double *
 \textit{Output}
 \textit{On exit:} the value of the \(u \) function at the point \(t \).
 \textit{Constraint:} \(u \geq 0.0 \).

3: \(ud \) – double *
 \textit{Output}
 \textit{On exit:} the value of the derivative of the \(u \) function at the point \(t \).

4: \(w \) – double *
 \textit{Output}
 \textit{On exit:} the value of the \(w \) function at the point \(t \).
 \textit{Constraint:} \(w \geq 0.0 \).

5: \(wd \) – double *
 \textit{Output}
 \textit{On exit:} the value of the derivative of the \(w \) function at the point \(t \).

6: \texttt{comm} – NAG_Comm *
 \textit{Input/Output}
 The NAG communication parameter (see the Essential Introduction).

3: \texttt{indm} – Integer
 \textit{Input}
 \textit{On entry:} indicates which form of the function \(v \) will be used.
 If \texttt{indm} = 1, \(v = 1 \).
 If \texttt{indm} \neq 1, \(v = u \).

4: \texttt{n} – Integer
 \textit{Input}
 \textit{On entry:} the number of observations, \(n \).
 \textit{Constraint:} \(n > 1 \).

5: \texttt{m} – Integer
 \textit{Input}
 \textit{On entry:} the number of columns of the matrix \(X \), i.e., number of independent variables, \(m \).
 \textit{Constraint:} \(1 \leq m \leq n \).

6: \(x[dim] \) – const double
 \textit{Input}
 \textit{Note:} the dimension, \textit{dim}, of the array \(x \) must be at least \(\max(1, \texttt{pdx} \times \texttt{m}) \) when \texttt{order} = NAG_ColMajor and at least \(\max(1, \texttt{pdx} \times \texttt{n}) \) when \texttt{order} = NAG_RowMajor.
 Where \(X(i,j) \) appears in this document, it refers to the array element
 \[
 \begin{align*}
 &\text{if } \texttt{order} = \text{Nag_ColMajor}, \quad x[(j - 1) \times \texttt{pdx} + i - 1]; \\
 &\text{if } \texttt{order} = \text{Nag_RowMajor}, \quad x[(i - 1) \times \texttt{pdx} + j - 1].
 \end{align*}
 \]
 \textit{On entry:} \(X(i,j) \) must contain the \(i \)th observation on the \(j \)th variable, for \(i = 1, 2, \ldots, n \); \(j = 1, 2, \ldots, m \).

7: \texttt{pdx} – Integer
 \textit{Input}
 \textit{On entry:} the stride separating matrix row or column elements (depending on the value of \texttt{order}) in the array \(x \).
 \textit{Constraints:}
 \[
 \begin{align*}
 &\text{if } \texttt{order} = \text{Nag_ColMajor}, \quad \texttt{pdx} \geq \texttt{n}; \\
 &\texttt{pdx} \geq \texttt{n}.
 \end{align*}
 \]
if order = Nag_RowMajor, pdx ≥ m.

8: \texttt{cov[dim]} – double \hspace{1cm} \textit{Output}

\textbf{Note:} the dimension, \texttt{dim}, of the array \texttt{cov} must be at least \(\mathbf{m} \times (\mathbf{m} + 1) / 2 \).

On exit: \texttt{cov} contains a robust estimate of the covariance matrix, \(\mathbf{C} \). The upper triangular part of the matrix \(\mathbf{C} \) is stored packed by columns (lower triangular stored by rows), \(C_{ij} \) is returned in \texttt{cov}(j × (j - 1)/2 + i), \(i \leq j \).

9: \texttt{a[dim]} – double \hspace{1cm} \textit{Input/Output}

\textbf{Note:} the dimension, \texttt{dim}, of the array \texttt{a} must be at least \(\mathbf{m} \times (\mathbf{m} + 1) / 2 \).

On entry: an initial estimate of the lower triangular real matrix \(\mathbf{A} \). Only the lower triangular elements must be given and these should be stored row-wise in the array.

The diagonal elements must be \(\neq 0 \), and in practice will usually be \(> 0 \). If the magnitudes of the columns of \(\mathbf{X} \) are of the same order, the identity matrix will often provide a suitable initial value for \(\mathbf{A} \). If the columns of \(\mathbf{X} \) are of different magnitudes, the diagonal elements of the initial value of \(\mathbf{A} \) should be approximately inversely proportional to the magnitude of the columns of \(\mathbf{X} \).

\textbf{Constraint:} \(\texttt{a}[j \times (j - 1)/2 + j] \neq 0 \) for \(j = 0, 1, \ldots, m - 1 \).

On exit: the lower triangular elements of the inverse of the matrix \(\mathbf{A} \), stored row-wise.

10: \texttt{wt[n]} – double \hspace{1cm} \textit{Output}

On exit: \(\texttt{wt[i]} \) contains the weights, \(w_{ti} = u(||z_i||_2) \), for \(i = 1, 2, \ldots, n \).

11: \texttt{theta[m]} – double \hspace{1cm} \textit{Input/Output}

\textbf{On entry:} an initial estimate of the location parameter, \(\theta_j \), for \(j = 1, 2, \ldots, m \).

In many cases an initial estimate of \(\theta_j = 0 \), for \(j = 1, 2, \ldots, m \), will be adequate. Alternatively medians may be used as given by \texttt{nag_median_1var (g07dac)}.

\textbf{On exit:} \texttt{theta} contains the robust estimate of the location parameter, \(\theta_j \), for \(j = 1, 2, \ldots, m \).

12: \texttt{bl} – double \hspace{1cm} \textit{Input}

\textbf{On entry:} the magnitude of the bound for the off-diagonal elements of \(\mathbf{S_k, BL} \).

\textbf{Suggested value:} \(0.9 \).

\textbf{Constraint:} \(\texttt{bl} > 0.0 \).

13: \texttt{bd} – double \hspace{1cm} \textit{Input}

\textbf{On entry:} the magnitude of the bound for the diagonal elements of \(\mathbf{S_k, BD} \).

\textbf{Suggested value:} \(0.9 \).

\textbf{Constraint:} \(\texttt{bd} > 0.0 \).

14: \texttt{maxit} – Integer \hspace{1cm} \textit{Input}

\textbf{On entry:} the maximum number of iterations that will be used during the calculation of \(\mathbf{A} \).

\textbf{Suggested value:} \(150 \).

\textbf{Constraint:} \(\texttt{maxit} > 0 \).

15: \texttt{nitmon} – Integer \hspace{1cm} \textit{Input}

\textbf{On entry:} indicates the amount of information on the iteration that is printed.

If \(\texttt{nitmon} > 0 \), then the value of \(\mathbf{A}, \theta \) and \(\delta \) (see Section 7) will be printed at the first and every \(\texttt{nitmon} \) iterations.
If nitmon ≤ 0, then no iteration monitoring is printed.

16: outfile – char *

Input

On *entry*: a null terminated character string giving the name of the file to which results should be printed. If outfile = NULL or an empty string then the stdout stream is used. Note that the file will be opened in the append mode.

17: tol – double

Input

On *entry*: the relative precision for the final estimates of the covariance matrix. Iteration will stop when maximum δ (see Section 7) is less than tol.

Constraint: tol > 0.0.

18: nit – Integer *

Output

On *exit*: the number of iterations performed.

19: comm – NAG_Comm *

Input/Output

The NAG communication parameter (see the Essential Introduction).

20: fail – NagError *

Input/Output

The NAG error parameter (see the Essential Introduction).

6 Error Indicators and Warnings

NE_INT

On entry, n = \langlevalue\rangle.

Constraint: n > 1.

On entry, pdx = \langlevalue\rangle.

Constraint: pdx > 0.

On entry, maxit = \langlevalue\rangle.

Constraint: maxit > 0.

On entry, m = \langlevalue\rangle.

Constraint: m ≥ 1.

NE_INT_2

On entry, pdx = \langlevalue\rangle, n = \langlevalue\rangle.

Constraint: pdx \geq n.

On entry, pdx = \langlevalue\rangle, m = \langlevalue\rangle.

Constraint: pdx \geq m.

On entry, n = \langlevalue\rangle, m = \langlevalue\rangle.

Constraint: n \geq m.

NE_CONST_COL

Column \langlevalue\rangle of x has constant value.

NE_CONVERGENCE

Iterations to calculate weights failed to converge.

NE_FUN_RET_VAL

u value returned by ucv < 0.0: $u(\langle$value$\rangle) = \langle$value\rangle.
w value returned by \texttt{ucv} < 0.0: $w(\langle value \rangle) = \langle value \rangle$.

NE_REAL

On entry, $bd = \langle value \rangle$.
Constraint: $bd > 0.0$.

On entry, $bl = \langle value \rangle$.
Constraint: $bl > 0.0$.

On entry, $tol = \langle value \rangle$.
Constraint: $tol > 0.0$.

NE_ZERO_DIAGONAL

On entry, diagonal element $\langle value \rangle$ of a is 0.0.

NE_ZERO_SUM

The sum $D3$ is zero.
The sum $D2$ is zero.
The sum $D1$ is zero.

NE_ALLOC_FAIL

Memory allocation failed.

NE_BAD_PARAM

On entry, parameter $\langle value \rangle$ had an illegal value.

NE_NOT_WRITE_FILE

Cannot open file $\langle value \rangle$ for writing.

NE_NOT_CLOSE_FILE

Cannot close file $\langle value \rangle$.

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the call is correct then please consult NAG for assistance.

7 Accuracy

On successful exit the accuracy of the results is related to the value of tol; see Section 5. At an iteration let

(i) $d1 = \text{the maximum value of } |s_{ij}|$
(ii) $d2 = \text{the maximum absolute change in } wt(i)$
(iii) $d3 = \text{the maximum absolute relative change in } \theta_j$

and let $\delta = \max(d1, d2, d3)$. Then the iterative procedure is assumed to have converged when $\delta < tol$.

8 Further Comments

The existence of A will depend upon the function u (see Marazzi (1987a)); also if X is not of full rank a value of A will not be found. If the columns of X are almost linearly related, then convergence will be slow.
9 Example

A sample of 10 observations on three variables is read in along with initial values for A and θ and parameter values for the u and w functions, c_u and c_w. The covariance matrix computed by nag_robust_m_corr_user_fn (g02hlc) is printed along with the robust estimate of θ. The function ucv computes the Huber’s weight functions:

$$u(t) = 1, \quad \text{if} \quad t \leq c_u^2$$

$$u(t) = \frac{c_u}{t^2}, \quad \text{if} \quad t > c_u^2$$

and

$$w(t) = 1, \quad \text{if} \quad t \leq c_w$$

$$w(t) = \frac{c_w}{t}, \quad \text{if} \quad t > c_w$$

and their derivatives.

9.1 Program Text

```c
#include <stdio.h>
#include <nag.h>
#include <nagg02.h>
#include <nag_stdlib.h>

static void ucv(double t, double *u, double *ud, double *w, double *wd, Nag_Comm *comm);

int main(void)
{
    /*!< Scalars */
    double bd, bl, tol;
    Integer exit_status, i__, indm, j, k, l1, l2, m, maxit, mm, n, nit, nitmon;
    Integer pdx;
    NagError fail;
    Nag_OrderType order;
    Nag_Comm comm;

    INIT_FAIL(fail);
    exit_status = 0;
    Vprintf("g02hlc Example Program Results\

    /* Arrays */
    double *a=0, *cov=0, *theta=0, *userp=0, *wt=0, *x=0;

    #ifdef NAG_COLUMN_MAJOR
    #define X(I,J) x[(J-1)*pdx+I-1]
    order = Nag_ColMajor;
    #else
    #define X(I,J) x[(I-1)*pdx+J-1]
    order = Nag_RowMajor;
    #endif

    /* Skip heading in data file */
    Vscanf("%*[\n] ");

    /* Read in the dimensions of X */
    Vscanf("%ld%ld%*[\n] ", &n, &m);
```

[NP3645/7] g02hlc.7
/* Allocate memory */
if (!(a = NAG_ALLOC(m*(m+1)/2, double)) ||
 !(cov = NAG_ALLOC(m*(m+1)/2, double)) ||
 !(theta = NAG_ALLOC(m, double)) ||
 !(userp = NAG_ALLOC(2, double)) ||
 !(wt = NAG_ALLOC(n, double)) ||
 !(x = NAG_ALLOC(n * m, double)))
{
 Vprintf("Allocation failure\n");
 exit_status = -1;
 goto END;
}
#endif /* NAG_COLUMN_MAJOR */
pdx = n;
#else
 pdx = m;
#endif
/* Read in the X matrix */
for (i__ = 1; i__ <= n; ++i__)
{
 for (j = 1; j <= m; ++j)
 Vscanf("%lf", &X(i__,j));
 Vscanf("%*[\n"]
 }
 } /* Read in the initial value of A */
 mm = (m + 1) * m / 2;
 for (j = 1; j <= mm; ++j)
 Vscanf("%lf", &a[j - 1]);
 Vscanf("%*[\n"]
 } /* Read in the initial value of theta */
 for (j = 1; j <= m; ++j)
 Vscanf("%lf", &theta[j - 1]);
 Vscanf("%*[\n"]
 } /* Read in the values of the parameters of the ucv functions */
 Vscanf("%lf%lf%*[\n"]", &userp[0], &userp[1]);
 /* Set the values of remaining parameters */
 indm = 1;
 bl = 0.9;
 bd = 0.9;
 maxit = 50;
 tol = 5e-5;
 /* Change nitmon to a positive value if monitoring information
 * is required */
 nitmon = 0;
 comm.p = (void*)userp;
g02hlc(order, ucv, indm, n, m, x, pdx, cov, a, wt,
 theta, bl, bd, maxit, nitmon, 0, tol, &nit, &comm,
 &fail);
 if (fail.code != NE_NOERROR)
 {
 Vprintf("Error from g02hlc.
%s
", fail.message);
 exit_status = 1;
 goto END;
 }
 Vprintf("\n");
 Vprintf("g02hlc required %4ld iterations to converge\n\n", nit);
 Vprintf("Robust covariance matrix\n");
 l2 = 0;
 for (j = 1; j <= m; ++j)
 {
 l1 = l2 + 1;
 l2 += j;
 for (k = l1; k <= l2; ++k)
 Vprintf("%10.3f%s", cov[k - 1], k%6 == 0 || k == l2 ?"\n": "");
 }
Vprintf("\n");

Vprintf("Robust estimates of theta\n");
for (j = 1; j <= m; ++j)
 Vprintf(" %10.3f\n", theta[j - 1]);

END:
if (a) NAG_FREE(a);
if (cov) NAG_FREE(cov);
if (theta) NAG_FREE(theta);
if (userp) NAG_FREE(userp);
if (wt) NAG_FREE(wt);
if (x) NAG_FREE(x);

return exit_status;
}

static void ucv(double t, double *u, double *ud, double *w, double *wd,
 Nag_Comm *comm)
{
 double t2, cu, cw;
 double *userp = (double *)comm->p;

 /* Function Body */
 cu = userp[0];
 *u = 1.0;
 *ud = 0.0;
 if (t != 0.0)
 {
 t2 = t * t;
 if (t2 > cu)
 {
 *u = cu / t2;
 *ud = *u * -2.0 / t;
 }
 }
 else
 {
 *u = 1.0;
 *ud = 0.0;
 }
 return;
}

9.2 Program Data

<table>
<thead>
<tr>
<th>N</th>
<th>M</th>
<th>X1</th>
<th>X2</th>
<th>X3</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>3</td>
<td>3.4</td>
<td>6.9</td>
<td>12.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6.4</td>
<td>2.5</td>
<td>15.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4.9</td>
<td>5.5</td>
<td>14.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7.3</td>
<td>1.9</td>
<td>18.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8.8</td>
<td>3.6</td>
<td>11.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8.4</td>
<td>1.3</td>
<td>17.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5.3</td>
<td>3.1</td>
<td>15.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.7</td>
<td>8.1</td>
<td>7.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6.1</td>
<td>3.0</td>
<td>21.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5.3</td>
<td>2.2</td>
<td>13.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.0</td>
<td>0.0</td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.0</td>
<td>0.0</td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4.0</td>
<td>2.0</td>
<td></td>
</tr>
</tbody>
</table>

[g02hlc.9]
9.3 Program Results

g02hlc Example Program Results

g02hlc required 25 iterations to converge

Robust covariance matrix

\[
\begin{pmatrix}
3.278 & -3.692 & 5.739 \\
-3.692 & 5.284 & -6.409 \\
5.739 & -6.409 & 11.837
\end{pmatrix}
\]

Robust estimates of theta

\[
\begin{pmatrix}
5.700 \\
3.864 \\
14.704
\end{pmatrix}
\]