NAG C Library Function Document

nag_robust_m_regsn_user_fn (g02hdc)

1 Purpose

nag_robust_m_regsn_user_fn (g02hdc) performs bounded influence regression (M-estimates) using an iterative weighted least-squares algorithm.

2 Specification

```c
void nag_robust_m_regsn_user_fn (Nag_OrderType order,
   double (*chi)(double t, Nag_Comm *comm),
   double (*psi)(double t, Nag_Comm *comm),
   double psi0, double beta, Nag_RegType regtype, Nag_SigmaEst sigma_est,
   Integer n, Integer m, double x[], Integer pdx, double y[], double wgt[],
   double theta[], Integer *k, double *sigma, double rs[], double tol, double eps,
   Integer maxit, Integer nitmon, const char *outfile, Integer *nit,
   Nag_Comm *comm, NagError *fail)
```

3 Description

For the linear regression model

\[y = X\theta + \epsilon, \]

where \(y \) is a vector of length \(n \) of the dependent variable,

\(X \) is a \(n \) by \(m \) matrix of independent variables of column rank \(k \),

\(\theta \) is a vector of length \(m \) of unknown parameters,

and \(\epsilon \) is a vector of length \(n \) of unknown errors with \(\text{var } (\epsilon_i) = \sigma^2 \),

nag_robust_m_regsn_user_fn (g02hdc) calculates the M-estimates given by the solution, \(\hat{\theta} \), to the equation

\[\sum_{i=1}^{n} \psi(r_i/\sigma w_i) w_i x_{ij} = 0, \quad j = 1, 2, \ldots, m, \]

(1)

where \(r_i \) is the \(i \)th residual i.e., the \(i \)th element of the vector \(r = y - X\hat{\theta} \),

\(\psi \) is a suitable weight function,

\(w_i \) are suitable weights such as those that can be calculated by using output from nag_robust_m_regsn_wts (g02hbc),

and \(\sigma \) may be estimated at each iteration by the median absolute deviation of the residuals

\[\hat{\sigma} = \text{med}(|r_i|)/\beta_1 \]

or as the solution to

\[\sum_{i=1}^{n} \chi(r_i/\hat{\sigma} w_i) w_i^2 = (n-k)\beta_2 \]

for a suitable weight function \(\chi \), where \(\beta_1 \) and \(\beta_2 \) are constants, chosen so that the estimator of \(\sigma \) is asymptotically unbiased if the errors, \(\epsilon_i \), have a Normal distribution. Alternatively \(\sigma \) may be held at a constant value.

The above describes the Schweppe type regression. If the \(w_i \) are assumed to equal 1 for all \(i \), then Huber type regression is obtained. A third type, due to Mallows, replaces (1) by

\[\sum_{i=1}^{n} \psi(r_i/\sigma) w_i x_{ij} = 0, \quad j = 1, 2, \ldots, m. \]
This may be obtained by use of the transformations

\[w_i^* \leftarrow \sqrt{w_i} \]
\[y_i^* \leftarrow y_i \sqrt{w_i} \]
\[x_{ij}^* \leftarrow x_{ij} \sqrt{w_i}, \quad j = 1, 2, \ldots, m \]

(see Marazzi (1987b)).

The calculation of the estimates of \(\theta \) can be formulated as an iterative weighted least-squares problem with a diagonal weight matrix \(G \) given by

\[
G_{ii} = \begin{cases}
\frac{\psi(r_i/(\sigma w_i))}{(r_i/(\sigma w_i))}, & r_i \neq 0 \\
\psi'(0), & r_i = 0.
\end{cases}
\]

The value of \(\theta \) at each iteration is given by the weighted least-squares regression of \(y \) on \(X \). This is carried out by first transforming the \(y \) and \(X \) by

\[
\tilde{y}_i = y_i \sqrt{G_{ii}}, \\
\tilde{x}_{ij} = x_{ij} \sqrt{G_{ii}}, \quad j = 1, 2, \ldots, m
\]

and then using a least squares solver. If \(X \) is of full column rank then an orthogonal-triangular (QR) decomposition is used; if not, a singular value decomposition is used.

Observations with zero or negative weights are not included in the solution.

Note: there is no explicit provision in the routine for a constant term in the regression model. However, the addition of a dummy variable whose value is 1.0 for all observations will produce a value of \(\hat{\theta} \) corresponding to the usual constant term.

\texttt{nag_robust_m_regsn_user_fn} (\texttt{g02hdc}) is based on routines in ROBETH, see Marazzi (1987b).

4 References

5 Parameters

1: \texttt{order} – \texttt{Nag_OrderType}

Input

\textit{On entry:} the \texttt{order} parameter specifies the two-dimensional storage scheme being used, i.e., row-major ordering or column-major ordering. C language defined storage is specified by \texttt{order = Nag_RowMajor}. See Section 2.2.1.4 of the Essential Introduction for a more detailed explanation of the use of this parameter.

\textit{Constraint:} \texttt{order = Nag_RowMajor} or \texttt{Nag_ColMajor}.

2: \texttt{chi}

Function

If \texttt{sigma_est = Nag_SigmaChi}, \texttt{chi} must return the value of the weight function \(\chi \) for a given value of its argument. The value of \(\chi \) must be non-negative.

Its specification is:

```
double chi (double t, Nag_Comm *comm)  

1: \texttt{t} – double  

*Input*

\textit{On entry:} the argument for which \texttt{chi} must be evaluated.
```
2: \textbf{comm} – NAG_Comm * \hspace{1cm} \textit{Input/Output}

The NAG communication parameter (see the Essential Introduction).

\texttt{chi} is required only if \texttt{sigma_est} = \texttt{Nag_SigmaConst}, otherwise it can be specified as a pointer with 0 value.

3: \textbf{psi} \hspace{1cm} \textit{Function}

\texttt{psi} must return the value of the weight function ψ for a given value of its argument.

Its specification is:

\begin{verbatim}
double psi (double t, Nag_Comm *comm)
1: t – double \hspace{1cm} \textit{Input}
On entry: the argument for which \texttt{psi} must be evaluated.
2: comm – NAG_Comm * \hspace{1cm} \textit{Input/Output}
The NAG communication parameter (see the Essential Introduction).
\end{verbatim}

4: \texttt{psip0} – double \hspace{1cm} \textit{Input}

\textit{On entry:} the value of $\psi'(0)$.

5: \textbf{beta} – double \hspace{1cm} \textit{Input}

\textit{On entry:} if \texttt{sigma_est} = \texttt{Nag_SigmaRes}, \texttt{beta} must specify the value of β_1.

For Huber and Schweppe type regressions, β_1 is the 75th percentile of the standard Normal distribution (see \texttt{nag_deviates_normal (g01fac)}). For Mallows type regression β_1 is the solution to

$$
\frac{1}{n} \sum_{i=1}^{n} \frac{1}{\sqrt{w_i}} = 0.75,
$$

where Φ is the standard Normal cumulative distribution function (see \texttt{nag_cumul_normal (s15abc)}).

If \texttt{sigma_est} = \texttt{Nag_SigmaChi}, \texttt{beta} must specify the value of β_2.

$$
\beta_2 = \int_{-\infty}^{\infty} \chi(z)\phi(z) \, dz, \quad \text{in the Huber case};
$$

$$
\beta_2 = \frac{1}{n} \sum_{i=1}^{n} w_i \int_{-\infty}^{\infty} \chi(z)\phi(z) \, dz, \quad \text{in the Mallows case};
$$

$$
\beta_2 = \frac{1}{n} \sum_{i=1}^{n} w_i^2 \int_{-\infty}^{\infty} \chi(z/w_i)\phi(z) \, dz, \quad \text{in the Schweppe case};
$$

where ϕ is the standard normal density, i.e., $\frac{1}{\sqrt{2\pi}} \exp\left(-\frac{1}{2}x^2\right)$.

If \texttt{sigma_est} = \texttt{Nag_SigmaConst}, \texttt{beta} is not referenced.

\textit{Constraint:}

if \texttt{sigma_est} \neq \texttt{Nag_SigmaConst}, \texttt{beta} > 0.0.

6: \textbf{regtype} – Nag_RegType \hspace{1cm} \textit{Input}

\textit{On entry:} determines the type of regression to be performed.

If \texttt{regtype} = \texttt{Nag_HuberReg}, Huber type regression.
If `regtype = Nag_MallowsReg`, Mallows type regression.

If `regtype = Nag_SchweppReg`, Schwepp type regression.

7: `sigma_est` – Nag_SigmaEst

Input

On entry: determines how σ is to be estimated.

If `sigma_est = Nag_SigmaRes`, σ is estimated by median absolute deviation of residuals.

If `sigma_est = Nag_SigmaConst`, σ is held constant at its initial value.

If `sigma_est = Nag_SigmaChi`, σ is estimated using the χ function.

8: `n` – Integer

Input

On entry: the number, n, of observations.

Constraint: $n > 1$.

9: `m` – Integer

Input

On entry: the number, m, of independent variables.

Constraint: $1 \leq m < n$.

10: `x[dim]` – double

Input/Output

Note: the dimension, `dim`, of the array `x` must be at least $\max(1, \text{pdx} \times m)$ when `order = Nag_ColMajor` and at least $\max(1, \text{pdx} \times n)$ when `order = Nag_RowMajor`.

Where $X(i,j)$ appears in this document, it refers to the array element

- if `order = Nag_ColMajor`, $x[(j-1) \times \text{pdx} + i - 1]$;
- if `order = Nag_RowMajor`, $x[(i-1) \times \text{pdx} + j - 1]$.

On entry: the values of the X matrix, i.e., the independent variables. $X(i,j)$ must contain the ijth element of x, for $i = 1,2,\ldots,n; j = 1,2,\ldots,m$.

If `regtype = Nag_MallowsReg`, then during calculations the elements of x will be transformed as described in Section 3. Before exit the inverse transformation will be applied. As a result there may be slight differences between the input x and the output x.

On exit: unchanged, except as described above.

11: `pdx` – Integer

Input

On entry: the stride separating matrix row or column elements (depending on the value of `order`) in the array `x`.

Constraints:

- if `order = Nag_ColMajor`, $\text{pdx} \geq n$;
- if `order = Nag_RowMajor`, $\text{pdx} \geq m$.

12: `y[n]` – double

Input/Output

On entry: the data values of the dependent variable.

$y[i-1]$ must contain the value of y for the ith observation, for $i = 1,2,\ldots,n$.

If `regtype = Nag_MallowsReg`, then during calculations the elements of y will be transformed as described in Section 3. Before exit the inverse transformation will be applied. As a result there may be slight differences between the input y and the output y.

On exit: unchanged, except as described above.

13: `wgt[n]` – double

Input/Output

On entry: the weight for the ith observation, for $i = 1,2,\ldots,n$.

`g02hdc.4 NAG C Library Manual`
If \(\text{regtype} = \text{Nag_MallowsReg} \), then during calculations elements of \(\text{wgt} \) will be transformed as described in Section 3. Before exit the inverse transformation will be applied. As a result there may be slight differences between the input \(\text{wgt} \) and the output \(\text{wgt} \).

If \(\text{wgt}[i - 1] \leq 0 \), then the \(i \)th observation is not included in the analysis.

If \(\text{regtype} = \text{Nag_HuberReg} \), \(\text{wgt} \) is not referenced.

On exit: unchanged, except as described above.

14: \(\theta[\text{m}] \) – double
\(\text{Input/Output} \)
\(\text{On entry:} \) starting values of the parameter vector \(\theta \). These may be obtained from least-squares regression. Alternatively if \(\text{sigma_est} = \text{Nag_SigmaRes} \) and \(\text{sigma} = 1 \) or if \(\text{sigma_est} = \text{Nag_SigmaChi} \) and \(\text{sigma} \) approximately equals the standard deviation of the dependent variable, \(y \), then \(\theta[i - 1] = 0.0 \), for \(i = 1, 2, \ldots, m \) may provide reasonable starting values.

\(\text{On exit:} \) the M-estimate of \(\theta_i \), for \(i = 1, 2, \ldots, m \).

15: \(k \) – Integer *
\(\text{Output} \)
\(\text{On exit:} \) the column rank of the matrix \(X \).

16: \(\text{sigma} \) – double *
\(\text{Input/Output} \)
\(\text{On entry:} \) a starting value for the estimation of \(\sigma \). \(\text{sigma} \) should be approximately the standard deviation of the residuals from the model evaluated at the value of \(\theta \) given by \(\theta \) on entry.

\(\text{Constraint:} \) \(\text{sigma} > 0.0 \).

\(\text{On exit:} \) the final estimate of \(\sigma \) if \(\text{sigma_est} \neq \text{Nag_SigmaConst} \) or the value assigned on entry if \(\text{sigma_est} = \text{Nag_SigmaConst} \).

17: \(r_s[\text{n}] \) – double
\(\text{Output} \)
\(\text{On exit:} \) the residuals from the model evaluated at final value of \(\theta \), i.e., \(r_s \) contains the vector \((y - X\theta) \).

18: \(\text{tol} \) – double
\(\text{Input} \)
\(\text{On entry:} \) the relative precision for the final estimates. Convergence is assumed when both the relative change in the value of \(\text{sigma} \) and the relative change in the value of each element of \(\theta \) are less than \(\text{tol} \).

It is advisable for \(\text{tol} \) to be greater than \(100 \times \text{machine precision} \).

\(\text{Constraint:} \) \(\text{tol} > 0.0 \).

19: \(\text{eps} \) – double
\(\text{Input} \)
\(\text{On entry:} \) a relative tolerance to be used to determine the rank of \(X \).

If \(\text{eps} < \text{machine precision} \) or \(\text{eps} > 1.0 \) then \(\text{machine precision} \) will be used in place of \(\text{tol} \).

A reasonable value for \(\text{eps} \) is \(5.0 \times 10^{-6} \) where this value is possible.

20: \(\text{maxit} \) – Integer
\(\text{Input} \)
\(\text{On entry:} \) the maximum number of iterations that should be used during the estimation.

A value of \(\text{maxit} = 50 \) should be adequate for most uses.

\(\text{Constraint:} \) \(\text{maxit} > 0.0 \).

21: \(\text{nitmon} \) – Integer
\(\text{Input} \)
\(\text{On entry:} \) determines the amount of information that is printed on each iteration.
If \texttt{nitmon} \leq 0 no information is printed.

If \texttt{nitmon} > 0 then on the first and every \texttt{nitmon} iterations the values of \texttt{sigma}, \texttt{theta} and the change in \texttt{theta} during the iteration are printed.

22: \texttt{outfile} – \texttt{char *} \hspace{1cm} \textit{Input}

\textit{On entry}: a null terminated character string giving the name of the file to which results should be printed. If \texttt{outfile} = \texttt{NULL} or an empty string then the \texttt{stdout} stream is used. Note that the file will be opened in the append mode.

23: \texttt{nit} – \texttt{Integer *} \hspace{1cm} \textit{Output}

\textit{On exit}: the number of iterations that were used during the estimation.

24: \texttt{comm} – \texttt{NAG_Comm *} \hspace{1cm} \textit{Input/Output}

The NAG communication parameter (see the Essential Introduction).

25: \texttt{fail} – \texttt{NagError *} \hspace{1cm} \textit{Input/Output}

The NAG error parameter (see the Essential Introduction).

6 \ Error Indicators and Warnings

\textbf{NE_INT}

\textit{On entry}: \texttt{n} = \langle\text{value}\rangle.
\textit{Constraint}: \texttt{n} \geq 1.

\textit{On entry}: \texttt{pdx} = \langle\text{value}\rangle.
\textit{Constraint}: \texttt{pdx} \geq 0.

\textit{On entry}: \texttt{m} = \langle\text{value}\rangle.
\textit{Constraint}: \texttt{m} \geq 1.

\textit{On entry}: \texttt{maxit} = \langle\text{value}\rangle.
\textit{Constraint}: \texttt{maxit} > 0.

\textbf{NE_INT_2}

\textit{On entry}: \texttt{pdx} = \langle\text{value}\rangle, \texttt{n} = \langle\text{value}\rangle.
\textit{Constraint}: \texttt{pdx} \geq \texttt{n}.

\textit{On entry}: \texttt{pdx} = \langle\text{value}\rangle, \texttt{m} = \langle\text{value}\rangle.
\textit{Constraint}: \texttt{pdx} \geq \texttt{m}.

\textit{On entry}: \texttt{n} \leq \texttt{m}: \texttt{n} = \langle\text{value}\rangle, \texttt{m} = \langle\text{value}\rangle.

\textbf{NE_ENUM_INT}

\textit{On entry}: \texttt{sigma_est} = \langle\text{value}\rangle, \texttt{beta} = \langle\text{value}\rangle.
\textit{Constraint}: if \texttt{sigma_est} \neq \texttt{Nag_SigmaConst}, \texttt{beta} > 0.0.

\textbf{NE_CHI}

Value given by \texttt{chi} function \textless{} 0: \texttt{chi(\langle\text{value}\rangle)} = \langle\text{value}\rangle.

\textbf{NE_CONVERGENCE_SOL}

Iterations to solve weighted least squares equations failed to converge.

\textbf{NE_CONVERGENCE_THETA}

Iterations to calculate estimates of \texttt{theta} failed to converge in \texttt{maxit} iterations: \texttt{maxit} = \langle\text{value}\rangle.
NE_FULL_RANK
Weighted least squares equations not of full rank: rank = ⟨value⟩.

NE_REAL
On entry, beta = ⟨value⟩.
Constraint: beta > 0.
On entry, sigma = ⟨value⟩.
Constraint: sigma > 0.
On entry, tol = ⟨value⟩.
Constraint: tol > 0.

NE_ZERO_DF
Value of n – k ≤ 0: n = ⟨value⟩, k = ⟨value⟩.

NE_ZERO_VALUE
Estimated value of sigma is zero.

NE_ALLOC_FAIL
Memory allocation failed.

NE_BAD_PARAM
On entry, parameter ⟨value⟩ had an illegal value.

NE_NOT_WRITE_FILE
Cannot open file ⟨value⟩ for writing.

NE_NOT_CLOSE_FILE
Cannot close file ⟨value⟩.

NE_INTERNAL_ERROR
An internal error has occurred in this function. Check the function call and any array sizes. If the call is correct then please consult NAG for assistance.

7 Accuracy
The accuracy of the results is controlled by tol.

8 Further Comments
In cases when sigma_est ≠ Nag_SigmaConst it is important for the value of sigma to be of a reasonable magnitude. Too small a value may cause too many of the winsorised residuals, i.e., ψ(r_i/σ), to be zero, which will lead to convergence problems and may trigger the fail.code = NE_FULL_RANK error.

By suitable choice of the functions chi and psi this routine may be used for other applications of iterative weighted least-squares.

For the variance-covariance matrix of θ see nag_robust_m_regsn_param_var (g02hfc).

9 Example
Having input X, Y and the weights, a Schweppe type regression is performed using Huber’s ψ function. The function \ttbetcal calculates the appropriate value of β₂.
#include <math.h>
#include <stdio.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nag02.h>
#include <nags.h>
#include <nagx01.h>
#include <nagx02.h>

static double chi(double t, Nag_Comm *comm);
static double psi(double t, Nag_Comm *comm);
static void betcal(Integer n, double wgt[], double *beta);

int main(void)
{
 /* Scalars */
 double beta, eps, psip0, sigma, tol;
 Integer exit_status, i, ix, j, k, m, maxit, n, nit, nitmon;
 Integer pdx;
 NagError fail;
 Nag_OrderType order;
 Nag_Comm comm;

 /* Arrays */
 double *rs=0, *theta=0, *wgt=0, *x=0, *y=0;

 INIT_FAIL(fail);
 exit_status = 0;
 Vprintf("g02hdc Example Program Results\n");

 /* Read in the dimensions of X */
 Vscanf("%d%ld%ld*.\n", &n, &m);

 /* Allocate memory */
 if (!(rs = NAG_ALLOC(n, double)) ||
 !(theta = NAG_ALLOC(m, double)) ||
 !(wgt = NAG_ALLOC(n, double)) ||
 !(x = NAG_ALLOC(n * m, double)) ||
 !(y = NAG_ALLOC(n, double)))
 {
 Vprintf("Allocation failure\n");
 exit_status = -1;
 goto END;
 }

 enever NAG_COLUMN_MAJOR
 pdx = n;
 #else
 pdx = m;
 #endif

 g02hdc
/* Read in the X matrix, the Y values and set X(i,1) to 1 for the */
/* constant term */
for (i = 1; i <= n; ++i)
{
 for (j = 2; j <= m; ++j)
 Vscanf("%lf", &X(i,j));
 Vscanf("%lf%*[\n] ", &y[i - 1]);
 X(i, 1) = 1.0;
}

/* Read in weights */
for (i = 1; i <= n; ++i)
{
 Vscanf("%lf", &wgt[i - 1]);
 Vscanf("%*[\n] ");
}
betcal(n, wgt, &beta);

/* Set other parameter values */
ix = 9;
maxit = 50;
tol = 5e-5;
eps = 5e-6;
psip0 = 1.0;

/* Set value of isigma and initial value of sigma */
sigma = 1.0;

/* Set initial value of theta */
for (j = 1; j <= m; ++j)
 theta[j - 1] = 0.0;
/* Change nitmon to a positive value if monitoring information */
/* is required */
nitmon = 0;

/* Schweppe type regression */
g02hdc(order, chi, psi, psip0, beta, Nag_SchweppeReg, Nag_SigmaChi, n, m,
x, pdx, y, wgt, theta, &k, &sigma, rs, tol, eps, maxit,
 nitmon, 0, &nit, &comm, &fail);
Vprintf("\n");
if (fail.code != NE_NOERROR && fail.code != NE_FULL_RANK)
{
 Vprintf("Error from g02hdc.\n\n", fail.message);
 exit_status = 1;
go to END;
}
else
{
 if (fail.code == NE_FULL_RANK)
 {
 Vprintf("g02hdc returned with message %s\n", fail.message);
 Vprintf("\n");
 Vprintf("Some of the following results may be unreliable\n");
 }
 Vprintf("g02hdc required %4ld iterations to converge\n", nit);
 Vprintf(" k = %4ld\n", k);
 Vprintf(" Sigma = %9.4f\n", sigma);
 Vprintf(" Theta\n");
 for (j = 1; j <= m; ++j)
 Vprintf("%9.4f\n", theta[j - 1]);
 Vprintf("\n");
 Vprintf(" Weights Residuals\n");
 for (i = 1; i <= n; ++i)
 Vprintf("%9.4f%9.4f\n", wgt[i - 1], rs[i - 1]);
}
END:
if (rs) NAG_FREE(rs);
if (theta) NAG_FREE(theta);
```c
if (wgt) NAG_FREE(wgt);
if (x) NAG_FREE(x);
if (y) NAG_FREE(y);
return exit_status;
}

static double psi(double t, Nag_Comm *comm)
{
  double ret_val;
  if (t <= -1.5)
    ret_val = -1.5;
  else if (fabs(t) < 1.5)
    ret_val = t;
  else
    ret_val = 1.5;
  return ret_val;
}

static double chi(double t, Nag_Comm *comm)
{
  /* Scalars */
  double ret_val;
  double ps;
  ps = 1.5;
  if (fabs(t) < 1.5)
    ps = t;
  ret_val = ps * ps / 2.0;
  return ret_val;
}

static void betcal(Integer n, double wgt[], double *beta)
{
  /* Scalars */
  double amaxex, anormc, b, d2, dc, dw, dw2, pc, w2;
  Integer i, ifail;
  /* Calculate BETA for Schweppe type regression */

  amaxex = -log(X02AKC);
  anormc = sqrt(X01AAC * 2.0);
  d2 = 2.25;
  *beta = 0.0;
  for (i = 1; i <= n; ++i)
  {
    w2 = wgt[i-1] * wgt[i-1];
    dw = wgt[i-1] * 1.5;
    ifail = 0;
    pc = s15abc(dw);
    dw2 = dw * dw;
    dc = 0.0;
    if (dw2 < amaxex)
      dc = exp(-dw2 / 2.0) / anormc;
    b = (-dw * dc + pc - 0.5) / w2 + (1.0 - pc) * d2;
    *beta = b * w2 / (double) (n) + *beta;
  }
  return;
}

9.2 Program Data

```
9.3 Program Results

g02hdc Example Program Results

g02hdc required 5 iterations to converge

\[
\begin{align*}
\text{k} &= 3 \\
\text{Sigma} &= 2.7783
\end{align*}
\]

Theta

\[
\begin{align*}
12.2321 \\
1.0500 \\
1.2464
\end{align*}
\]

Weights Residuals

\[
\begin{align*}
0.4039 & -0.5643 \\
0.5012 & -1.1286 \\
0.4039 & 0.5643 \\
0.5012 & -1.1286 \\
0.3862 & 1.1286
\end{align*}
\]