nag_glm_gamma (g02gdc)

1. Purpose

nag_glm_gamma (g02gdc) fits a generalized linear model with gamma errors.

2. Specification

```c
#include <nag.h>
#include <nagg02.h>

void nag_glm_gamma(Nag_Link link, Nag_IncludeMean mean, Integer n,
                   double x[], Integer tdx, Integer m, Integer sx[], Integer ip,
                   double y[], double wt[], double offset[], double *scale,
                   double ex_power, double *dev, double *df, double b[],
                   Integer *rank, double se[], double cov[], double v[],
                   Integer tdv, double tol, Integer max_iter, Integer print_iter,
                   char *outfile, double eps, NagError *fail)
```

3. Description

A generalized linear model with gamma errors consists of the following elements:

(a) a set of \(n \) observations, \(y_i \), from a gamma distribution with probability density function:

\[
\frac{1}{\Gamma(\nu)} \left(\frac{\nu y}{\mu} \right)^\nu \exp \left(-\frac{\nu y}{\mu} \right) \frac{1}{y}
\]

\(\nu \) being constant for the sample.

(b) \(X \), a set of \(p \) independent variables for each observation, \(x_1, x_2, ..., x_p \).

(c) a linear model:

\[
\eta = \sum \beta_j x_j.
\]

(d) a link between the linear predictor, \(\eta \), and the mean of the distribution, \(\mu \), \(\eta = g(\mu) \). The possible link functions are:

(i) power link: \(\eta = \mu^a \), for a constant \(a \),

(ii) identity link: \(\eta = \mu \),

(iii) log link: \(\eta = \log \mu \),

(iv) square root link: \(\eta = \sqrt{\mu} \),

(v) reciprocal link: \(\eta = \frac{1}{\mu} \).

(e) a measure of fit, an adjusted deviance. This is a function related to the deviance, but defined
for \(y = 0 \):

\[
\sum_{i=1}^{n} \text{dev}^*(y_i, \hat{\mu}_i) = \sum_{i=1}^{n} 2 \left\{ \log(\hat{\mu}_i) + \left(\frac{y_i}{\hat{\mu}_i} \right) \right\}
\]

The linear parameters are estimated by iterative weighted least-squares. An adjusted dependent
variable, \(z \), is formed:

\[
z = \eta + (y - \mu) \frac{d\eta}{d\mu}
\]

and a working weight, \(w \),

\[
w = \sqrt{\tau \frac{d\eta}{d\mu}} \quad \text{where} \quad \tau = \frac{1}{\mu}.
\]
At each iteration an approximation to the estimate of \(\beta \), \(\hat{\beta} \) is found by the weighted least-squares regression of \(z \) on \(X \) with weights \(w \).

\(\texttt{nag_glm_gamma} \) finds a QR decomposition of \(w^{1/2}X \), i.e.,
\[
w^{1/2}X = QR \text{ where } R \text{ is a } p \text{ by } p \text{ triangular matrix and } Q \text{ is an } n \text{ by } p \text{ column orthogonal matrix.}
\]

If \(R \) is of full rank then \(\hat{\beta} \) is the solution to:
\[
R\hat{\beta} = Q^T w^{1/2}z
\]

If \(R \) is not of full rank a solution is obtained by means of a singular value decomposition (SVD) of \(R \).
\[
R = Q\begin{pmatrix} D & 0 \\ 0 & 0 \end{pmatrix} P^T.
\]

where \(D \) is a \(k \) by \(k \) diagonal matrix with non-zero diagonal elements, \(k \) being the rank of \(R \) and \(w^{1/2}X \).

This gives the solution
\[
\hat{\beta} = P_1D^{-1}\begin{pmatrix} Q_\ast & 0 \\ 0 & I \end{pmatrix} Q^T w^{1/2}z
\]

\(P_1 \) being the first \(k \) columns of \(P \), i.e., \(P = (P_1P_0) \).

The iterations are continued until there is only a small change in the deviance.

The initial values for the algorithm are obtained by taking
\[
\hat{\eta} = g(y)
\]

The scale parameter, \(\nu^{-1} \) is estimated by a moment estimator:
\[
\nu^{-1} = \frac{\sum_{i=1}^{n} [(y_i - \hat{\mu}_i)/\hat{\mu}_i]^2}{(n - k)}.
\]

The fit of the model can be assessed by examining and testing the deviance, in particular, by comparing the difference in deviance between nested models, i.e., when one model is a sub-model of the other. The difference in deviance or adjusted deviance between two nested models with known \(\nu \) has, asymptotically, a \(\chi^2 \) distribution with degrees of freedom given by the difference in the degrees of freedom associated with the two deviances.

The parameters estimates, \(\hat{\beta} \), are asymptotically Normally distributed with variance-covariance matrix:
\[
C = R^{-1}R^{-1T} \text{ in the full rank case, otherwise}
\]
\[
C = P_1D^{-2}P_1^T
\]

The residuals and influence statistics can also be examined.

The estimated linear predictor \(\hat{\eta} = X\hat{\beta} \), can be written as \(Hw^{1/2}z \) for an \(n \) by \(n \) matrix \(H \). The \(i \)th diagonal elements of \(H \), \(h_i \), give a measure of the influence of the \(i \)th values of the independent variables on the fitted regression model. These are known as leverages.

The fitted values are given by \(\hat{\mu} = g^{-1}(\hat{\eta}) \).

\(\texttt{nag_glm_gamma} \) also computes the Anscombe residuals, \(r \):
\[
r_i = \frac{3(y_i^{1/3} - \hat{\mu}_i^{1/3})}{\hat{\mu}_i^{1/3}}
\]

An option allows the use of prior weights, \(\omega_i \). This gives a model with:
\[
\nu_i = \nu \omega_i
\]
In many linear regression models the first term is taken as a mean term or an intercept, i.e., $x_{i1} = 1$, for $i = 1, 2, \ldots, n$. This is provided as an option.

Often only some of the possible independent variables are included in a model, the facility to select variables to be included in the model is provided.

If part of the linear predictor can be represented by a variable with a known coefficient then this can be included in the model by using an offset, o:

$$\eta = o + \sum \beta_j x_j.$$

If the model is not of full rank the solution given will be only one of the possible solutions. Other estimates may be obtained by applying constraints to the parameters. These solutions can be obtained by using nag_glm_tran_model (g02gkc) after using nag_glm_gamma. Only certain linear combinations of the parameters will have unique estimates, these are known as estimable functions, these can be estimated and tested using nag_glm_est_func (g02gnc).

Details of the SVD, are made available, in the form of the matrix P^*:

$$P^* = \begin{pmatrix} D^{-1}P_1^T \\ P_0^T \end{pmatrix}.$$

4. Parameters

link

Input: indicates which link function is to be used.

If $\text{link} = \text{Nag_Expo}$, then an exponent link is used.

If $\text{link} = \text{Nag_Iden}$, then an identity link is used.

If $\text{link} = \text{Nag_Log}$, then a log link is used.

If $\text{link} = \text{Nag_Sqrt}$, then a square root link is used.

If $\text{link} = \text{Nag_Reci}$, then a reciprocal link is used.

Constraint: $\text{link} = \text{Nag_Expo}$, Nag_Iden, Nag_Log, Nag_Sqrt or Nag_Reci.

mean

Input: indicates if a mean term is to be included.

If $\text{mean} = \text{Nag_MeanInclude}$, a mean term, (intercept), will be included in the model.

If $\text{mean} = \text{Nag_MeanZero}$, the model will pass through the origin, zero point.

Constraint: $\text{mean} = \text{Nag_MeanInclude}$ or Nag_MeanZero.

n

Input: the number of observations, n.

Constraint: $n \geq 2$.

x[n][tdx]

Input: $x[i-1][j-1]$ must contain the ith observation for the jth independent variable, for $i = 1, 2, \ldots, n$; $j = 1, 2, \ldots, m$.

tdx

Input: the second dimension of the array x as declared in the function from which nag_glm_gamma is called.

Constraint: $\text{tdx} \geq m$.

m

Input: the total number of independent variables.

Constraint: $m \geq 1$.

sx[m]

Input: indicates which independent variables are to be included in the model.

If $\text{sx}[[j-1]] > 0$, then the variable contained in the jth column of x is included in the regression model.

Constraints: $\text{sx}[[j-1]] \geq 0$, for $j = 1, 2, \ldots, m$.

- if $\text{mean} = \text{Nag_MeanInclude}$, then exactly $ip - 1$ values of sx must be > 0.
- if $\text{mean} = \text{Nag_MeanZero}$, then exactly ip values of sx must be > 0.

[NP3275/5/pdf] 3.g02gdc.3
nag_glm_gamma

ip

Input: the number \(p \) of independent variables in the model, including the mean or intercept if present.

Constraint: \(\text{ip} \) must be \(> 0 \).

y[i]

Input: observations on the dependent variable, \(y_i \), for \(i = 1, \ldots, n \).

Constraint: \(y[i - 1] \geq 0 \), for \(i = 1, 2, \ldots, n \).

wt[i]

Input: if weighted estimates are required then \(\text{wt} \) must contain the weights to be used with the model, \(\omega_i \). Otherwise \(\text{wt} \) must be supplied as the null pointer, (double *)0.
If \(\text{wt}[i - 1] = 0.0 \), then the \(i \)th observation is not included in the model, in which case the effective number of observations is the number of observations with positive weights.
If \(\text{wt} = \) null pointer, then the effective number of observations is \(n \).

Constraint: \(\text{wt} = \) null pointer or \(\text{wt}[i - 1] \geq 0.0 \), for \(i = 1, 2, \ldots, n \).

offset[i]

Input: if an offset is required then \(\text{offset} \) must contain the values of the offset \(o \). Otherwise \(\text{offset} \) must be supplied as the null pointer, (double *)0.

scale

Input: the scale parameter for the gamma model, \(\nu^{-1} \).
If \(\text{scale} = 0.0 \), then the scale parameter is estimated with the function using the formula described in Section 3.
Output: if on input \(\text{scale} = 0.0 \), then \(\text{scale} \) contains the estimated value of the scale parameter, \(\tilde{\nu}^{-1} \). If on input \(\text{scale} \neq 0.0 \), then \(\text{scale} \) is unchanged on exit.

Constraint: \(\text{scale} \geq 0.0 \).

ex_power

Input: if \(\text{link} = \text{Nag_Expo} \) then \(\text{ex_power} \) must contain the power \(a \) of the exponential.
If \(\text{link} \neq \text{Nag_Expo} \), \(\text{ex_power} \) is not referenced.

Constraint: If \(\text{link} = \text{Nag_Expo} \), \(\text{ex_power} \neq 0.0 \).

df

Output: the degrees of freedom associated with the deviance for the fitted model.

b[ip]

Output: the estimates of the parameters of the generalized linear model, \(\hat{\beta} \).
If \(\text{mean} = \text{Nag_MeanInclude} \), then \(b[0] \) will contain the estimate of the mean parameter and \(b[i] \) will contain the coefficient of the variable contained in column \(j \) of \(x \), where \(sx[j - 1] \) is the \(i \)th positive value in the array \(sx \).
If \(\text{mean} = \text{Nag_MeanZero} \), then \(b[i - 1] \) will contain the coefficient of the variable contained in column \(j \) of \(x \), where \(sx[j - 1] \) is the \(i \)th positive value in the array \(sx \).

rank

Output: the rank of the independent variables.
If the model is of full rank, then \(\text{rank} = \text{ip} \).
If the model is not of full rank, then \(\text{rank} \) is an estimate of the rank of the independent variables. \(\text{rank} \) is calculated as the number of singular values greater than \(\text{eps} \times \) (largest singular value). It is possible for the SVD to be carried out but \(\text{rank} \) to be returned as \(\text{ip} \).

se[ip]

Output: the standard errors of the linear parameters.
\(\text{se}[i - 1] \) contains the standard error of the parameter estimate in \(b[i - 1] \), for \(i = 1, 2, \ldots, \text{ip} \).

cov[ip*(ip+1)/2]

Output: the \(\text{ip} \times (\text{ip} + 1)/2 \) elements of \(\text{cov} \) contain the upper triangular part of the variance-covariance matrix of the \(\text{ip} \) parameter estimates given in \(b \). They are stored packed by column, i.e., the covariance between the parameter estimate given in \(b[i] \) and the parameter estimate given in \(b[j] \), \(j \geq i \), is stored in \(\text{cov}[j(j + 1)/2 + i] \), for \(i = 0, 1, \ldots, \text{ip} - 1 \) and \(j = i, i + 1, \ldots, \text{ip} - 1 \).
Output: auxiliary information on the fitted model.

- **v[i−1][0]**, contains the linear predictor value, \(\eta_i \), for \(i = 1, 2, \ldots, n \).
- **v[i−1][1]**, contains the fitted value, \(\hat{\mu}_i \), for \(i = 1, 2, \ldots, n \).
- **v[i−1][2]**, contains the variance standardization, \(\tau_i \), for \(i = 1, 2, \ldots, n \).
- **v[i−1][3]**, contains the working weight, \(w_i \), for \(i = 1, 2, \ldots, n \).
- **v[i−1][4]**, contains the Anscombe residual, \(r_i \), for \(i = 1, 2, \ldots, n \).
- **v[i−1][5]**, contains the leverage, \(h_i \), for \(i = 1, 2, \ldots, n \).
- **v[i−1][j−1]**, for \(j = 7, \ldots, ip+6 \), contains the results of the QR decomposition or the singular value decomposition.

If the model is not of full rank, i.e., \(\text{rank} < ip \), then the first \(ip \) rows of columns 7 to \(ip+6 \) contain the \(P^* \) matrix.

tdv

Input: the second dimension of the array \(v \) as declared in the function from which \(\text{nag_glm_gamma} \) is called.

Constraint: \(tdv \geq ip+6 \).

tol

Input: indicates the accuracy required for the fit of the model.

The iterative weighted least-squares procedure is deemed to have converged if the absolute change in deviance between interactions is less than \(\text{tol} \times (1.0 + \text{Current Deviance}) \). This is approximately an absolute precision if the deviance is small and a relative precision if the deviance is large.

If \(0.0 \leq \text{tol} < \text{machine precision} \), then the function will use \(10 \times \text{machine precision} \).

Constraint: \(\text{tol} \geq 0.0 \).

max_iter

Input: the maximum number of iterations for the iterative weighted least-squares.

If \(\text{max_iter} = 0 \), then a default value of 10 is used.

Constraint: \(\text{max_iter} \geq 0 \).

print_iter

Input: indicates if the printing of information on the iterations is required and the rate at which printing is produced. The following values are available.

- If \(\text{print_iter} \leq 0 \), then there is no printing.
- If \(\text{print_iter} > 0 \), then the following items are printed every \(\text{print_iter} \) iterations:
 1. the deviance,
 2. the current estimates, and
 3. if the weighted least-squares equations are singular then this is indicated.

outfile

Input: a null terminated character string giving the name of the file to which results should be printed. If \(\text{outfile} = \text{NULL} \) or an empty string then the \text{stdout} stream is used. Note that the file will be opened in the append mode.

eps

Input: the value of \(\text{eps} \) is used to decide if the independent variables are of full rank and, if not, what the rank of the independent variables is. The smaller the value of \(\text{eps} \) the stricter the criterion for selecting the singular value decomposition.

If \(0.0 \leq \text{eps} < \text{machine precision} \), then the function will use \text{machine precision} instead.

Constraint: \(\text{eps} \geq 0.0 \).

fail

The NAG error parameter, see the Essential Introduction to the NAG C Library.

For this function the values of output parameters may be useful even if \(\text{fail.code} \neq \text{NE_NOERROR} \) on exit. Users are therefore advised to supply the \text{fail} parameter and set \(\text{fail.print} = \text{TRUE} \).
5. Error Indications and Warnings

NE_BAD_PARAM
On entry, parameter link had an illegal value.
On entry, parameter mean had an illegal value.

NE_INT_ARG_LT
On entry, n must not be less than 2: n = ⟨value⟩.
On entry, m must not be less than 1: m = ⟨value⟩.
On entry, ip must not be less than 1: ip = ⟨value⟩.
On entry, sx[=value] must not be less than 0: sx[=value] = ⟨value⟩.
On entry, max_iter must not be less than 0: max_iter = ⟨value⟩.

NE_2_INT_ARG_LT
On entry, tdx = ⟨value⟩ while m = ⟨value⟩. These parameters must satisfy tdx ≥ m.
On entry, tdv = ⟨value⟩ while ip = ⟨value⟩. These parameters must satisfy tdv ≥ ip+6.

NE_REAL_ARG_LT
On entry, scale must not be less than 0.0: scale = ⟨value⟩.
On entry, tol must not be less than 0.0: tol = ⟨value⟩.
On entry, eps must not be less than 0.0: eps = ⟨value⟩.
On entry, wt[=value] must not be less than 0.0: wt[=value] = ⟨value⟩.
On entry, y[=value] must not be less than 0.0: y[=value] = ⟨value⟩.

NE_REAL_ENUM_ARG_CONS
On entry ex_power = 0.0, link = Nag_Expo.
These parameters must satisfy link == Nag_Expo & ex_power ≠ 0.0.

NE_ALLOC_FAIL
Memory allocation failed.

NE_INCOMP_SX
ip is incompatible with mean and sx.

NE_IP_GT_OBSERV
ip is greater than the effective number of observations.

NE_SVD_NOT_CONV
The singular value decomposition has failed to converge.

NE_VALUE_AT_BOUNDARY_D
A fitted value is at a boundary, i.e., ̂µ = 0.0. This may occur if there are small values of y and the model is not suitable for the data. The model should be reformulated with, perhaps, some observations dropped.

NE_LSQ_ITER_NOT_CONV
The iterative weighted least-squares has failed to converge in max_iter = ⟨value⟩ iterations. The value of max_iter could be increased but it may be advantageous to examine the convergence using the print_iter option. This may indicate that the convergence is slow because the solution is at a boundary in which case it may be better to reformulate the model.

NE_RANK_CHANGED
The rank of the model has changed during the weighted least-squares iterations. The estimate for ̂µ returned may be reasonable, but the user should check how the deviance has changed during iterations.

NE_ZERO_DOF_ERROR
The degrees of freedom for error are 0. A saturated model has been fitted.

NE_NOT_APPEND_FILE
Cannot open file ⟨string⟩ for appending.

NE_NOT_CLOSE_FILE
Cannot close file ⟨string⟩.
6. Further Comments

6.1. Accuracy

The accuracy is determined by \texttt{tol} as described in Section 4. As the adjusted deviance is a function of $\log \mu$ the accuracy of the $\hat{\beta}$’s will be a function of \texttt{tol}. \texttt{tol} should therefore be set to a smaller value than the accuracy required for β.

6.2. References

7. See Also

nag.glm.normal (g02gac)
nag.glm.binomial (g02gbc)
nag.glm.poisson (g02gcc)
nag.glm.tran.model (g02gkc)
nag.glm.est.func (g02gnc)

8. Example

A set of 10 observations from two groups is input and a model for the two groups is fitted.

8.1. Program Text

```c
/* nag_glm_gamma(g02gdc) Example Program. *
 * Copyright 1996 Numerical Algorithms Group. *
 * Mark 4, 1996. *
 */

#include <nag.h>
#include <stdio.h>
#include <nag_stdlib.h>
#include <ctype.h>
#include <nagg02.h>

#define NMAX 10
#define MMAX 2
#define TDX MMAX
#define TDV MMAX+6

main()
{
  char linkc, meanc, weightc;
  Nag_Link link;
  Nag_IncludeMean mean;
  Integer i, j, m, n, ip;
  double ex_power, scale;
  Integer sx[MMAX];
  double b[MMAX], y[MMAX][TDV], wt[MMAX], x[MMAX][MMAX], y[MMAX];
  double *wtptr, *offsetptr=(double *)0;
  Integer max_iter;
  Integer print_iter;
  double eps;
  double tol;
  double df;
  double dev;

  // Program code...
```

Integer rank;
double se[MMAX], cov[MMAX*(MMAX+1)/2];
static NagError fail;

Vprintf("g02gdc Example Program Results\n");
/* Skip heading in data file */
Vscanf("%*[^\n]");
Vscanf("%c %c %c %ld %ld %ld %lf", &linkc, &meanc, &weightc, &n,
 &m, &print_iter, &scale);

/* Check and set control parameters */
set_enum(linkc, &link, meanc, &mean);
if (n<=NMAX && m<MMAX)
{
 if (toupper(weightc)=='W')
 {
 wtptr = wt;
 for (i=0; i<n; i++)
 {
 for (j=0; j<m; j++)
 Vscanf("%lf", &x[i][j]);
 Vscanf("%lf%lf", &y[i], &wt[i]);
 }
 }
 else
 {
 wtptr = (double *)0;
 for (i=0; i<n; i++)
 {
 for (j=0; j<m; j++)
 Vscanf("%lf", &x[i][j]);
 Vscanf("%lf", &y[i]);
 }
 }
 for (j=0; j<m; j++)
 Vscanf("%ld", &sx[j]);
/* Calculate ip */
ip = 0;
for (j=0; j<m; j++)
 if (sx[j]>0) ip += 1;
 if (mean == Nag_MeanInclude)
 ip += 1;
 if (link == Nag_Expo)
 Vscanf("%lf", &ex_power);
 else
 ex_power = 0.0;
/* Set other control parameters */
max_iter = 10;
tol = 5e-5;
eps = 1e-6;
g02gdc(link, mean, n, (double *)x, (Integer)TDX, m, sx, ip, y,
 wtptr, offsetptr, &scale, ex_power, &dev, &df, b, &rank,
 se, cov, (double *)v, (Integer)TDV, tol, max_iter,
 print_iter, "", eps, &fail);
if (fail.code == NE_NOERROR || fail.code == NE_LSQ_ITER_NOT_CONV ||
 fail.code == NE_RANK_CHANGED || fail.code == NE_ZERO_DOF_ERROR)
{
 Vprintf("\nDeviance = %12.4e\n", dev);
 Vprintf("Degrees of freedom = %3.1f\n", df);
 Vprintf(" Estimate Standard error\n");
 for (i=0; i<ip; i++)
 Vprintf("%14.4f%14.4f\n", b[i], se[i]);
 Vprintf("\n");
 Vprintf(" y fitted value Residual Leverage\n");
 for (i = 0; i < n; ++i)
 Vprintf("%14.4f%14.4f%14.4f\n", x[i][0], y[i], wt[i]);
 Vprintf("\n");
}
Vprintf("%7.1f%10.2f%12.4f%10.3f
", y[i], v[i][1], v[i][4], v[i][5]);

else
{
Vprintf("%s\n", fail.message);
exit(EXIT_FAILURE);
}
else
{
Vfprintf(stderr, "One or both of m and n are out of range: \n m = %-3ld while n = %-3ld\n", m, n);
exit(EXIT_FAILURE);
}
exit(EXIT_SUCCESS);
#endif

static void set_enum(char linkc, Nag_Link *link, char meanc,
Nag_IncludeMean *mean)
{
if (toupper(linkc) == 'E' || toupper(linkc) == 'I' ||
toupper(linkc) == 'L' ||
toupper(linkc) == 'S' ||
toupper(linkc) == 'R')
{
switch (toupper(linkc))
{
 case ('E'):
 *link = Nag_Expo;
 break;
 case ('I'):
 *link = Nag_Iden;
 break;
 case ('L'):
 *link = Nag_Log;
 break;
 case ('S'):
 *link = Nag_Sqrt;
 break;
 case ('R'):
 *link = Nag_Reci;
 break;
 default:
 ;
}
else
{
 Vfprintf(stderr, "The parameter link has an invalid value: link = %c\n",
 linkc);
 exit(EXIT_FAILURE);
}
if (toupper(meanc) == 'M')
 *mean = Nag_MeanInclude;
else if (toupper(meanc) == 'Z')
 *mean = Nag_MeanZero;
else
{
 Vfprintf(stderr, "The parameter mean has an invalid value: mean = %c\n",
 meanc);
 exit(EXIT_FAILURE);
}
8.2. Program Data

g02gdc Example Program Data

<table>
<thead>
<tr>
<th>r</th>
<th>m</th>
<th>u</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>1.0</td>
<td>0.3</td>
<td></td>
</tr>
<tr>
<td>1.0</td>
<td>10.5</td>
<td></td>
</tr>
<tr>
<td>1.0</td>
<td>9.7</td>
<td></td>
</tr>
<tr>
<td>1.0</td>
<td>10.9</td>
<td></td>
</tr>
<tr>
<td>0.0</td>
<td>0.62</td>
<td></td>
</tr>
<tr>
<td>0.0</td>
<td>0.12</td>
<td></td>
</tr>
<tr>
<td>0.0</td>
<td>0.09</td>
<td></td>
</tr>
<tr>
<td>0.0</td>
<td>0.50</td>
<td></td>
</tr>
<tr>
<td>0.0</td>
<td>2.14</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>

8.3. Program Results

g02gdc Example Program Results

Deviance = 3.5034e+01
Degrees of freedom = 8.0

<table>
<thead>
<tr>
<th>Estimate</th>
<th>Standard error</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.4408</td>
<td>0.6678</td>
</tr>
<tr>
<td>-1.2865</td>
<td>0.6717</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>y</th>
<th>fitted value</th>
<th>Residual</th>
<th>Leverage</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>6.48</td>
<td>-1.3909</td>
<td>0.200</td>
</tr>
<tr>
<td>0.3</td>
<td>6.48</td>
<td>-1.9228</td>
<td>0.200</td>
</tr>
<tr>
<td>10.5</td>
<td>6.48</td>
<td>0.5236</td>
<td>0.200</td>
</tr>
<tr>
<td>9.7</td>
<td>6.48</td>
<td>0.4318</td>
<td>0.200</td>
</tr>
<tr>
<td>10.9</td>
<td>6.48</td>
<td>0.5678</td>
<td>0.200</td>
</tr>
<tr>
<td>0.6</td>
<td>0.69</td>
<td>-0.1107</td>
<td>0.200</td>
</tr>
<tr>
<td>0.1</td>
<td>0.69</td>
<td>-1.3287</td>
<td>0.200</td>
</tr>
<tr>
<td>0.1</td>
<td>0.69</td>
<td>-1.4815</td>
<td>0.200</td>
</tr>
<tr>
<td>0.5</td>
<td>0.69</td>
<td>-0.3106</td>
<td>0.200</td>
</tr>
<tr>
<td>2.1</td>
<td>0.69</td>
<td>1.3665</td>
<td>0.200</td>
</tr>
</tbody>
</table>