NAG C Library Function Document

nag_durbin_watson_stat (g02fcc)

1 Purpose
nag_durbin_watson_stat (g02fcc) calculates the Durbin–Watson statistic, for a set of residuals, and the upper and lower bounds for its significance.

2 Specification

```c
void nag_durbin_watson_stat (Integer n, Integer p, const double *res[], double *d, double *pdl, double *pdu, NagError *fail)
```

3 Description

For the general linear regression model

\[y = X\beta + \epsilon, \]

where \(y \) is a vector of length \(n \) of the dependent variable,

\(X \) is a \(n \) by \(p \) matrix of the independent variables,

\(\beta \) is a vector of length \(p \) of unknown parameters,

and \(\epsilon \) is a vector of length \(n \) of unknown random errors.

The residuals are given by

\[r = y - \hat{y} = y - X\hat{\beta} \]

and the fitted values, \(\hat{y} = X\hat{\beta} \), can be written as \(Hy \) for a \(n \) by \(n \) matrix \(H \). Note that when a mean term is included in the model the sum of the residuals is zero. If the observations have been taken serially, that is \(y_1, y_2, \ldots, y_n \) can be considered as a time series, the Durbin–Watson test can be used to test for serial correlation in the \(\epsilon_i \), see Durbin and Watson (1950), Durbin and Watson (1951) and Durbin and Watson (1971).

The Durbin–Watson statistic is

\[d = \frac{\sum_{i=1}^{n-1} (r_{i+1} - r_i)^2}{\sum_{i=1}^{n} r_i^2}. \]

Positive serial correlation in the \(\epsilon_i \) will lead to a small value of \(d \) while for independent errors \(d \) will be close to 2. Durbin and Watson show that the exact distribution of \(d \) depends on the eigenvalues of the matrix \(HA \) where the matrix \(A \) is such that \(d \) can be written as

\[d = \frac{r^T A r}{r^T r}, \]

and the eigenvalues of the matrix \(A \) are \(\lambda_j = (1 - \cos(\pi j/n)) \), for \(j = 1, 2, \ldots, n - 1 \).

However bounds on the distribution can be obtained, the lower bound being

\[d_l = \frac{\sum_{i=1}^{n-p} \lambda_i u_i^2}{\sum_{i=1}^{n} u_i^2}, \]

and the upper bound being

\[d_u = \frac{\sum_{i=1}^{n-p} \lambda_{i-1+p} u_i^2}{\sum_{i=1}^{n} u_i^2}, \]

where the \(u_i \) are independent standard Normal variables. The lower tail probabilities associated with these bounds, \(p_l \) and \(p_u \), are computed by nag_prob_durbin_watson (g01epc). The interpretation of the bounds
is that, for a test of size (significance) α, if $p_l \leq \alpha$ the test is significant, if $p_u > \alpha$ the test is not significant, while if $p_l > \alpha$ and $p_u \leq \alpha$ no conclusion can be reached.

The above probabilities are for the usual test of positive auto-correlation. If the alternative of negative auto-correlation is required, then a call to nag_prob_durbin_watson (g01epc) should be made with the parameter d taking the value of $4 - d$; see Newbold (1988).

4 References

5 Parameters

1: n – Integer \quad Input

On entry: the number of residuals, n.

Constraint: $n > p$.

2: p – Integer \quad Input

On entry: the number, p, of independent variables in the regression model, including the mean.

Constraint: $p \geq 1$.

3: res[n] – const double \quad Input

On entry: the residuals, r_1, r_2, \ldots, r_n.

Constraint: the mean of the residuals $\leq \sqrt{\epsilon}$, where $\epsilon = \text{machine precision}$.

4: d – double \quad Output

On exit: the Durbin–Watson statistic, d.

5: pdl – double \quad Output

On exit: lower bound for the significance of the Durbin–Watson statistic, p_l.

6: pdu – double \quad Output

7: fail – NagError \quad Input/Output

The NAG error parameter (see the Essential Introduction).

6 Error Indicators and Warnings

NE_INT

On entry, $p = (\text{value})$.

Constraint: $p \geq 1$.
NE_INT_2
 On entry, \(n = \langle \text{value} \rangle \), \(p = \langle \text{value} \rangle \).
 Constraint: \(n > p \).

NE_RESID_IDEN
 On entry, all residuals are identical.

NE_RESID_MEAN
 On entry, The mean of \(\text{res} \) is not approximately 0.0, mean = \(\langle \text{value} \rangle \).

NE_ALLOC_FAIL
 Memory allocation failed.

NE_BAD_PARAM
 On entry, parameter \(\langle \text{value} \rangle \) had an illegal value.

NE_INTERNAL_ERROR
 An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please consult NAG for assistance.

7 Accuracy
The probabilities are computed to an accuracy of at least 4 decimal places.

8 Further Comments
If the exact probabilities are required, then the first \(n - p \) eigenvalues of \(HA \) can be computed and
\nag_prob_lin_chi_sq (g01jdc) used to compute the required probabilities with the parameter \(c \) set to 0.0
and the parameter \(d \) set to the Durbin–Watson statistic \(d \).

9 Example
A set of 10 residuals are read in and the Durbin–Watson statistic along with the probability bounds are
computed and printed.

9.1 Program Text
/* nag_durbin_watson_stat (g02fcc) Example Program. *
 * Copyright 2002 Numerical Algorithms Group. *
 * Mark 7, 2002. */
#include <stdio.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nag02.h>

int main(void)
{
 /* Scalars */
 double d, pdl, pdu;
 Integer exit_status, i, p, n;
 NagError fail;

 /* Arrays */
 double *res=0;

 /* Scalars */
 double d, pdl, pdu;
 Integer exit_status, i, p, n;
 NagError fail;

 /* Arrays */
 double *res=0;

INIT_FAIL(fail);
exit_status = 0;
Vprintf("g02fcc Example Program Results\n");

/* Skip heading in data file */
Vscanf("%*[\n]");
Vscanf("%ld%*[\n] ", &p);
n = 10;

/* Allocate memory */
if (!(res = NAG_ALLOC(n, double)))
{
 Vprintf("Allocation failure\n");
 exit_status = -1;
 goto END;
}
for (i = 1; i <= n; ++i)
 Vscanf("%lf", &res[i - 1]);
Vscanf("%*[\n]");
g02fcc(n, p, res, &d, &pdl, &pdu, &fail);
if (fail.code != NE_NOERROR)
{
 Vprintf("Error from g02fcc.\n%s\n", fail.message);
 exit_status = 1;
 goto END;
}
Vprintf("\n");
Vprintf(" Durbin-Watson statistic %10.4f\n", d);
Vprintf(" Lower and upper bound %10.4f%10.4f\n", pdl, pdu);
END:
 if (res) NAG_FREE(res);
 return exit_status;
}

9.2 Program Data

g02fcc Example Program Data
2
3.735719 0.912755 0.683626 0.416693 1.9902
-0.444816 -1.283088 -3.666035 -0.426357 -1.918697

9.3 Program Results

g02fcc Example Program Results

 Durbin-Watson statistic 0.9238

 Lower and upper bound 0.0610 0.0060