1. **Purpose**

nag_corr_cov (g02bxc) calculates the Pearson product-moment correlation coefficients and the variance-covariance matrix for a set of data. Weights may be used.

2. **Specification**

```c
#include <nag.h>
#include <nagg02.h>

void nag_corr_cov(Integer n, Integer m, double x[], Integer tdx,
                   Integer sx[], double wt[], double *sw, double wmean[],
                   double std[], double r[], Integer tdr, double v[],
                   Integer tdv, NagError *fail)
```

3. **Description**

For *n* observations on *m* variables a one-pass updating algorithm (see West 1979) is used to compute the means, the standard deviations, the variance-covariance matrix, and the Pearson product-moment correlation matrix for *p* selected variables. Suitable weights may be used to indicate multiple observations and to remove missing values.

The quantities are defined by:

(a) The means

\[
\bar{x}_j = \frac{\sum_{i=1}^{n} w_i x_{ij}}{\sum_{i=1}^{n} w_i} \quad j = 1, \ldots, p
\]

(b) The variance-covariance matrix

\[
C_{jk} = \frac{\sum_{i=1}^{n} w_i (x_{ij} - \bar{x}_j)(x_{ik} - \bar{x}_k)}{\sum_{i=1}^{n} w_i - 1} \quad j, k = 1, \ldots, p
\]

(c) The standard deviations

\[
s_j = \sqrt{C_{jj}} \quad j = 1, \ldots, p
\]

(d) The Pearson product-moment correlation coefficients

\[
R_{jk} = \frac{C_{jk}}{\sqrt{C_{jj}C_{kk}}} \quad j, k = 1, \ldots, p
\]

where *x*_{ij} is the value of the *i*th observation on the *j*th variable and *w*_i is the weight for the *i*th observation which will be 1 in the unweighted case.

Note that the denominator for the variance-covariance is \(\sum_{i=1}^{n} w_i - 1\), so the weights should be scaled so that the sum of weights reflects the true sample size.

4. **Parameters**

- **n**
 - Input: the number of observations in the data set, *n*.
 - Constraint: *n* > 1.

- **m**
 - Input: the total number of variables, *m*.
 - Constraint: *m* ≥ 1.
NAG C Library Manual

\textbf{nag_corr_cov}

\begin{verbatim}
x[n][tdx]
 Input: the data \(x[i-1][j-1] \) must contain the \(i \)th observation on the \(j \)th variable, \(x_{ij} \), for
 \(i = 1, \ldots, n \); \(j = 1, \ldots, m \).

 tdx
 Input: the second dimension of the array \(x \) as declared in the function from which nag_corr_cov
 is called.
 Constraint: \(tdx \geq m \).

sx[m]
 Input: indicates which \(p \) variables to include in the analysis.
 If \(sx[j-1] > 0 \), the \(j \)th variable is to be included.
 If \(sx[j-1] = 0 \), the \(j \)th variable is not to be included.
 If \(sx \) is set to the null pointer (Integer *)0 then all variables are included in the analysis, i.e.,
 \(p = m \).
 Constraint: \(sx[i] \geq 0 \), for \(i = 1, \ldots, m \).

wt[n]
 Input: the optional frequency weighting for each observation. \(wt[i-1] \) contains the weight for
 the \(i \)th data value. Usually \(wt[i-1] \) will be an integral value corresponding to the number of
 observations associated with the \(i \)th data value, or zero if the \(i \)th data value is to be ignored.
 If \(wt \) is set to the null pointer (double *)0 then \(wt \) is not referenced.
 Constraint: \(wt[i-1] \geq 0.0 \), for \(i = 1, \ldots, n \).

sw
 Output: the sum of weights if \(wt \) is not the null pointer, otherwise \(sw \) contains the number
 of observations, \(n \).

wmean[m]
 Output: the sample means. \(wmean[j-1] \) contains the mean for the \(j \)th variable.

std[m]
 Output: the standard deviations. \(std[j-1] \) contains the standard deviation for the \(j \)th
 variable.

r[m][tdr]
 Output: the matrix of Pearson product-moment correlation coefficients. \(r[j-1][k-1] \) contains
 the correlation between variables \(j \) and \(k \), for \(j, k = 1, \ldots, p \).

tdr
 Input: the second dimension of the array \(r \) as declared in the function from which nag_corr_cov
 is called.
 Constraint: \(tdr \geq m \).

v[m][tdv]
 Output: the variance-covariance matrix. \(v[j-1][k-1] \) contains the covariance between
 variables \(j \) and \(k \), for \(j, k = 1, \ldots, p \).

tdv
 Input: the second dimension of the array \(r \) as declared in the function from which nag_corr_cov
 is called.
 Constraint: \(tdv \geq m \).

fail
 The NAG error parameter, see the Essential Introduction to the NAG C Library.

5. Error Indications and Warnings

\textbf{NE_INT_ARG_LE}
 On entry, \(n \) must be greater than 1: \(n = \langle value \rangle \).

\textbf{NE_INT_ARG_LT}
 On entry, \(m \) must not be less than 1: \(m = \langle value \rangle \).
\end{verbatim}
6. Further Comments

Correlation coefficients based on ranks can be computed using nag_kendall_coeffs (g02brc).

6.1. Accuracy

6.2. References

7. See Also

nag_kendall_coeffs (g02brc)

8. Example

A program to calculate the means, standard deviations, variance-covariance matrix and a matrix of Pearson product-moment correlation coefficients for a set of 3 observations of 3 variables.

8.1. Program Text

```c
/* nag_corr_cov(g02bxc) Example Program
 */

#include <nag.h>
#include <stdio.h>
#include <nagg02.h>
```

#define NMAX 5
#define MMAX 5
#define TDX MMAX
#define TDV MMAX
#define TDR MMAX

main()
{
 double x[NMAX][TDX], r[MMAX][TDR], v[MMAX][TDV];
 double wt[NMAX], *wtptr;
 double sw, wmean[MMAX], std[MMAX];
 Integer i, j, n, m;
 char w;
 Integer tdx, tdr, tdv;
 Vprintf("g02bxc Example Program Results\n");
 /* Skip heading in data file */
 Vscanf("%*[\n]");
 tdx = TDX;
 tdr = TDR;
 tdv = TDV;
 test = 0;

 while ((scanf("%ld%ld %c", &m, &n, &w) != EOF))
 {
 if (m>=1 && m<=MMAX && n>=1 && n<=NMAX)
 {
 for(i=0; i<n; i++)
 Vscanf("%lf", &wt[i]);
 for(i=0; i<n; i++)
 for(j=0; j<m; j++)
 Vscanf("%lf", &x[i][j]);
 if (w == 'w')
 wtptr = wt;
 else
 wtptr = (double *)0;
 g02bxc(n, m, (double *)x, tdx, (Integer *)0, wtptr, &sw, wmean, std,
 (double *)r, tdr, (double *)v, tdv, NAGERR_DEFAULT);
 if (wtptr)
 Vprintf("Case %ld --- Using weights\n", ++test);
 else
 Vprintf("Case %ld --- Not using weights\n", ++test);
 Vprintf ("Input data\n");
 for(i=0; i<n; i++)
 Vprintf("%6.1f%6.1f%6.1f%6.1f\n", x[i][0], x[i][1], x[i][2], wt[i]);
 Vprintf("\n");
 Vprintf("Sample means.\n");
 for(i=0; i<m; i++)
 Vprintf("%6.1f\n", wmean[i]);
 Vprintf("Standard deviation.\n");
 for(i=0; i<m; i++)
 Vprintf("%6.1f\n", std[i]);
 Vprintf("Correlation matrix.\n");
 for(i=0; i<m; i++)
 {
 for(j=0; j<m; j++)
 Vprintf("%7.4f ", r[i][j]);
 Vprintf("\n");
 }
 Vprintf("Variance matrix.\n");
 for(i=0; i<m; i++)
 {
 }
 }
 }
}
for(j=0; j<m; j++)
 Vprintf(" %7.3f ", v[i][j]);
 Vprintf("\n");
}
Vprintf("\nSum of weights %6.1f\n", sw);
else
{
 Vfprintf(stderr, "One or both of m and n are out of range:\n m = %-3ld while n = %-3ld\n", m, n);
 exit(EXIT_FAILURE);
}
exit(EXIT_SUCCESS);

8.2. Program Data

g02bxc Example Program Data
3 3 w
 9.1231 3.7011 4.5230
 0.9310 0.0900 0.8870
 0.0009 0.0099 0.0999
 0.1300 1.3070 0.3700

3 3 w
 0.1300 1.3070 0.3700
 9.1231 3.7011 4.5230
 0.9310 0.0900 0.8870
 0.0009 0.0099 0.0999

3 3 u
 0.717 9.370 0.013
 1.119 0.133 9.700
 11.100 23.510 11.117
 0.900 9.013 8.710

3 3 w
 0.717 19.370 0.013
 1.119 0.133 9.700
 11.100 23.510 11.117
 0.900 9.013 78.710

3 3 u
 0.717 19.370 0.013
 1.119 0.133 9.700
 11.100 3.510 13.117
 0.900 0.013 78.710

3 3 w
 0.717 19.370 0.913
 1.119 0.133 9.700
 17.100 93.510 13.117
 30.900 0.013 78.710

8.3. Program Results

g02bxc Example Program Results

Case 1 --- Using weights

Input data
 0.9 0.1 0.9 9.1
 0.0 0.0 0.1 3.7
 0.1 1.3 0.4 4.5

Sample means.
 0.5
 0.4
 0.6
Standard deviation.
0.4
0.6
0.3

Correlation matrix.
\[
\begin{array}{ccc}
1.0000 & -0.4932 & 0.9839 \\
-0.4932 & 1.0000 & -0.3298 \\
0.9839 & -0.3298 & 1.0000 \\
\end{array}
\]

Variance matrix.
\[
\begin{array}{ccc}
0.197 & -0.123 & 0.149 \\
-0.123 & 0.316 & -0.063 \\
0.149 & -0.063 & 0.117 \\
\end{array}
\]

Sum of weights 17.3

Case 2 --- Using weights

Input data
\[
\begin{array}{cccc}
9.1 & 3.7 & 4.5 & 0.1 \\
0.9 & 0.1 & 0.9 & 1.3 \\
0.0 & 0.0 & 0.1 & 0.4 \\
\end{array}
\]

Sample means.
1.3
0.3
1.0

Standard deviation.
3.3
1.4
1.5

Correlation matrix.
\[
\begin{array}{ccc}
1.0000 & 0.9908 & 0.9903 \\
0.9908 & 1.0000 & 0.9624 \\
0.9903 & 0.9624 & 1.0000 \\
\end{array}
\]

Variance matrix.
\[
\begin{array}{ccc}
10.851 & 4.582 & 5.044 \\
4.582 & 1.971 & 2.089 \\
5.044 & 2.089 & 2.391 \\
\end{array}
\]

Sum of weights 1.8

Case 3 --- Not using weights

Input data
\[
\begin{array}{cccc}
1.1 & 0.1 & 9.7 & 0.7 \\
11.1 & 23.5 & 11.1 & 9.4 \\
0.9 & 9.0 & 8.7 & 0.0 \\
\end{array}
\]

Sample means.
4.4
10.9
9.8

Standard deviation.
5.8
11.8
1.2

Correlation matrix.
\[
\begin{array}{ccc}
1.0000 & 0.9193 & 0.9200 \\
0.9193 & 1.0000 & 0.6915 \\
0.9200 & 0.6915 & 1.0000 \\
\end{array}
\]
Variance matrix.
\[
\begin{bmatrix}
33.951 & 63.208 & 6.485 \\
63.208 & 139.250 & 9.871 \\
6.485 & 9.871 & 1.464 \\
\end{bmatrix}
\]

Sum of weights 3.0

Case 4 --- Using weights

Input data
\[
\begin{bmatrix}
1.1 & 0.1 & 9.7 & 0.7 \\
11.1 & 23.5 & 11.1 & 19.4 \\
0.9 & 9.0 & 78.7 & 0.0 \\
\end{bmatrix}
\]

Sample means.
\[
\begin{bmatrix}
10.7 \\
22.7 \\
11.1 \\
\end{bmatrix}
\]

Standard deviation.
\[
\begin{bmatrix}
1.9 \\
4.5 \\
1.8 \\
\end{bmatrix}
\]

Correlation matrix.
\[
\begin{bmatrix}
1.0000 & 0.9985 & 0.0173 \\
0.9985 & 1.0000 & 0.0716 \\
0.0173 & 0.0716 & 1.0000 \\
\end{bmatrix}
\]

Variance matrix.
\[
\begin{bmatrix}
3.672 & 8.538 & 0.059 \\
8.538 & 19.909 & 0.570 \\
0.059 & 0.570 & 3.185 \\
\end{bmatrix}
\]

Sum of weights 20.1

Case 5 --- Not using weights

Input data
\[
\begin{bmatrix}
1.1 & 0.1 & 9.7 & 0.7 \\
11.1 & 3.5 & 13.1 & 19.4 \\
0.9 & 0.0 & 78.7 & 0.0 \\
\end{bmatrix}
\]

Sample means.
\[
\begin{bmatrix}
4.4 \\
1.2 \\
33.8 \\
\end{bmatrix}
\]

Standard deviation.
\[
\begin{bmatrix}
5.8 \\
2.0 \\
38.9 \\
\end{bmatrix}
\]

Correlation matrix.
\[
\begin{bmatrix}
1.0000 & 0.9999 & -0.4781 \\
0.9999 & 1.0000 & -0.4881 \\
-0.4781 & -0.4881 & 1.0000 \\
\end{bmatrix}
\]

Variance matrix.
\[
\begin{bmatrix}
33.951 & 11.567 & -108.343 \\
11.567 & 3.941 & -37.687 \\
-108.343 & -37.687 & 1512.750 \\
\end{bmatrix}
\]

Sum of weights 3.0
Case 6 --- Using weights

Input data

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>0.1</td>
<td>9.7</td>
<td>0.7</td>
</tr>
<tr>
<td>17.1</td>
<td>93.5</td>
<td>13.1</td>
<td>19.4</td>
</tr>
<tr>
<td>30.9</td>
<td>0.0</td>
<td>78.7</td>
<td>0.9</td>
</tr>
</tbody>
</table>

Sample means.
17.2
86.3
15.9

Standard deviation.
4.2
25.6
13.7

Correlation matrix.

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0000</td>
<td>-0.0461</td>
<td>0.7426</td>
</tr>
<tr>
<td>-0.0461</td>
<td>1.0000</td>
<td>-0.7033</td>
</tr>
<tr>
<td>0.7426</td>
<td>-0.7033</td>
<td>1.0000</td>
</tr>
</tbody>
</table>

Variance matrix.

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>17.846</td>
<td>-4.989</td>
<td>43.123</td>
</tr>
<tr>
<td>-4.989</td>
<td>656.407</td>
<td>-247.692</td>
</tr>
<tr>
<td>43.123</td>
<td>-247.692</td>
<td>188.970</td>
</tr>
</tbody>
</table>

Sum of weights 21.0