NAG C Library Function Document

nag_prob_non_central_beta_dist (g01gec)

1 Purpose

nag_prob_non_central_beta_dist (g01gec) returns the probability associated with the lower tail of the non-central beta distribution.

2 Specification

```c
#include <nag.h>
#include <nagg01.h>

double nag_prob_non_central_beta_dist (double x, double a, double b,
                                     double lambda, double tol, Integer max_iter, NagError *fail)
```

3 Description

The lower tail probability for the non-central beta distribution with parameters a and b and non-centrality parameter λ, $P(B \leq \beta : a, b; \lambda)$, is defined by

$$P(B \leq \beta : a, b; \lambda) = \sum_{j=0}^{\infty} e^{-\lambda/2} \left(\frac{\lambda}{2}\right)^j \frac{\Gamma(a + j + b)}{\Gamma(a)\Gamma(b)} P(B \leq \beta : a, b; 0)$$ (1)

where

$$P(B \leq \beta : a, b; 0) = \frac{\Gamma(a + b)}{\Gamma(a)\Gamma(b)} \int_0^\beta (1 - B)^{a-1} B^{b-1} dB,$$

which is the central beta probability function or incomplete beta function.

Recurrence relationships given in Abramowitz and Stegun (1972) are used to compute the values of $P(B \leq \beta : a, b; 0)$ for each step of the summation (1).

The algorithm is discussed in Lenth (1987).

4 Parameters

1: x – double

 Input

 On entry: the deviate, β, from the beta distribution, for which the probability $P(B \leq \beta : a, b; \lambda)$, is to be found.

 Constraint: $0.0 \leq x \leq 1.0$.

2: a – double

 Input

 On entry: the first parameter, a, of the required beta distribution.

 Constraint: $0.0 < a \leq 10^6$.

3: b – double

 Input

 On entry: the second parameter, b, of the required beta distribution.

 Constraint: $0.0 < b \leq 10^6$.

[NP3491/6]
4: **lambda** – double
Input

On entry: the non-centrality parameter, λ, of the required beta distribution.

Constraint: $0.0 \leq \text{lambda} \leq -2.0 \times \log(U)$, where U is the safe range parameter as defined by nag_real_safe_small_number (X02AMC).

5: **tol** – double
Input

On entry: the relative accuracy required by the user in the results. If nag_prob_non_central_beta_dist is entered with **tol** greater than or equal to 1.0 or less than $10 \times \text{machine precision}$ (see nag_machine_precision (X02AJC)), then the value of $10 \times \text{machine precision}$ is used instead.

See Section 6.1 for the relationship between **tol** and **max_iter**.

6: **max_iter** – Integer
Input

On entry: the maximum number of iterations that the algorithm should use.

See Section 6.1 for suggestions as to suitable values for **max_iter** for different values of the parameters.

Suggested value: 500.

Constraint: $\text{max_iter} \geq 1$.

7: **fail** – NagError *
Input/Output

The NAG error parameter (see the Essential Introduction).

5 **Error Indicators and Warnings**

NE_REAL_ARG_CONS

On entry, $x = <value>$.
This parameter must satisfy $0.0 < x \leq 1.0$.

On entry, $a = <value>$.
This parameter must satisfy $0.0 < a \leq 1.0e6$.

On entry, $b = <value>$.
This parameter must satisfy $0.0 < b \leq 1.0e6$.

On entry, $\text{lambda} = <value>$.
This parameter must satisfy $0.0 \leq \text{lambda} \leq -2.0 \times \log(X02AMC)$.

NE_INT_ARG_LT

*On entry, **max_iter** must not be less than 1: **max_iter** = $<value>$.*

NE_CONV

The solution has failed to converge in $<value>$ iterations, consider increasing **max_iter** or **tol**.

NE_PROB_LIMIT

The probability is too close to 0.0 or 1.0 for the algorithm to be able to calculate the required probability. nag_prob_non_central_beta_dist will return 0.0 or 1.0 as appropriate. This should be a reasonable approximation.

NE_PROB_B_INIT

The required accuracy was not achieved when calculating the initial value of the beta distribution. The user should try a larger value of **tol**. The returned value will be an approximation to the correct value.
NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the call is correct then please consult NAG for assistance.

6 Further Comments

The central beta probabilities can be obtained by setting \(\lambda = 0.0 \).

6.1 Accuracy

Convergence is theoretically guaranteed whenever \(P(Y > \text{max_iter}) \leq \text{tol} \) where \(Y \) has a Poisson distribution with mean \(\lambda/2 \). Excessive round-off errors are possible when the number of iterations used is high and \(\text{tol} \) is close to \textit{machine precision}. See Lenth (1987) for further comments on the error bound.

6.2 References

7 See Also

None.

8 Example

Values for several beta distributions are read, and the lower tail probabilities calculated and printed, until the end of data is reached.

8.1 Program Text

/* nag_prob_non_central_beta_dist (g01gea) Example Program. */

* Copyright 2000 Numerical Algorithms Group.
* * Mark 6, 2000.
*/

#include <stdio.h>
#include <nag.h>
#include <nagf01.h>

int main(void)
{
 double a, b, prob, lambda, tol, x;
 Integer max_iter;
 Integer exit_status=0;
 NagError fail;

 INIT_FAIL(fail);
 Vprintf("g01gea Example Program Results\n");

 /* Skip heading in data file */
 Vscanf("%*[\n]");

8.2 Program Data

\texttt{g01gec} Example Program Data

<table>
<thead>
<tr>
<th>x</th>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.25</td>
<td>1.0</td>
<td>2.0</td>
</tr>
<tr>
<td>0.75</td>
<td>1.5</td>
<td>1.5</td>
</tr>
<tr>
<td>0.50</td>
<td>2.00</td>
<td>1.00</td>
</tr>
</tbody>
</table>

: x a lambda

8.3 Program Results

\texttt{g01gec} Example Program Results

<table>
<thead>
<tr>
<th>x</th>
<th>a</th>
<th>b</th>
<th>lambda</th>
<th>prob</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.25</td>
<td>1.00</td>
<td>2.00</td>
<td>1.00</td>
<td>0.3168</td>
</tr>
<tr>
<td>0.75</td>
<td>1.50</td>
<td>1.50</td>
<td>0.50</td>
<td>0.7705</td>
</tr>
<tr>
<td>0.50</td>
<td>2.00</td>
<td>1.00</td>
<td>0.00</td>
<td>0.2500</td>
</tr>
</tbody>
</table>