NAG C Library Function Document

nag_summary_stats_freq (g01adc)

1 Purpose
nag_summary_stats_freq (g01adc) calculates the mean, standard deviation and coefficients of skewness and kurtosis for data grouped in a frequency distribution.

2 Specification
void nag_summary_stats_freq (Integer k, const double x[], const Integer ifreq[], double *xmean, double *xsd, double *xskew, double *xkurt, Integer *n, NagError *fail)

3 Description
The input data consist of a univariate frequency distribution, denoted by \(f_i \), for \(i = 1, 2, \ldots, k - 1 \), and the boundary values of the classes \(x_i \), for \(i = 1, 2, \ldots, k \). Thus the frequency associated with the interval \((x_i, x_{i+1}) \) is \(f_i \), and nag_summary_stats_freq (g01adc) assumes that all the values in this interval are concentrated at the point
\[
y_i = \frac{(x_{i+1} + x_i)}{2}, \quad i = 1, 2, \ldots, k - 1.
\]
The following quantities are calculated:

(a) total frequency,
\[
n = \sum_{i=1}^{k-1} f_i.
\]

(b) mean,
\[
y = \frac{\sum_{i=1}^{k-1} f_i y_i}{n}.
\]

(c) standard deviation,
\[
s_2 = \sqrt{\frac{\sum_{i=1}^{k-1} f_i (y_i - \bar{y})^2}{n(n-1)}}, \quad n \geq 2.
\]

(d) coefficient of skewness,
\[
s_3 = \frac{\sum_{i=1}^{k-1} f_i (y_i - \bar{y})^3}{(n-1) \times s_2^3}, \quad n \geq 2.
\]

(e) coefficient of kurtosis,
\[
s_4 = \frac{\sum_{i=1}^{k-1} f_i (y_i - \bar{y})^4}{(n-1) \times s_2^4} - 3, \quad n \geq 2.
\]
The function has been developed primarily for groupings of a continuous variable. If, however, the function is to be used on the frequency distribution of a discrete variable, taking the values \(y_1, \ldots, y_{k-1} \), then the boundary values for the classes may be defined as follows:

(i) for \(k > 2 \),
\[
x_1 = \frac{(3y_1 - y_2)}{2},
x_j = \frac{(y_{j-1} + y_j)}{2}, \quad j = 2, \ldots, k - 1
\]
\[
x_k = \frac{(3y_{k-1} - y_{k-2})}{2}
\]

(ii) for \(k = 2 \),
\[
x_1 = y_1 - a \quad \text{and} \quad x_2 = y_1 + a \quad \text{for any } a > 0.
\]
4 References
None.

5 Parameters
1: \(k \) – Integer \(\text{Input} \)
 \(On \ entry: \) the number of class boundaries, which is one more than the number of classes of the
 frequency distribution, \(k \).
 \(Constraint: \ k > 1. \)

2: \(x[k] \) – const double \(\text{Input} \)
 \(On \ entry: \) the elements of \(x \) must contain the boundary values of the classes in ascending order, so
 that class \(i \) is bounded by the values in \(x[i-1] \) and \(x[i] \), for \(i = 1,2,\ldots,k-1. \)
 \(Constraint: \ x[i] < x[i+1] \) for \(i = 0,1,\ldots,k-2. \)

3: \(ifreq[k] \) – const Integer \(\text{Input} \)
 \(On \ entry: \) the \(i \)th element of \(ifreq \) must contain the frequency associated with the \(i \)th class, for
 \(i = 1,2,\ldots,k-1. \) \(ifreq[k-1] \) is not used by the function.
 \(Constraint: \ ifreq[i-1] \geq 0, \) for \(i = 1,2,\ldots,k-1 \) and \(\sum_{i=1}^{k-1} ifreq[i-1] > 0. \)

4: \(xmean \) – double \(\text{Output} \)
 \(On \ exit: \) the mean value, \(\bar{y}. \)

5: \(xsd \) – double \(\text{Output} \)
 \(On \ exit: \) the standard deviation, \(s_2. \)

6: \(xskew \) – double \(\text{Output} \)
 \(On \ exit: \) the coefficient of skewness, \(s_3. \)

7: \(xkurt \) – double \(\text{Output} \)
 \(On \ exit: \) the coefficient of kurtosis, \(s_4. \)

8: \(n \) – Integer \(\text{Output} \)
 \(On \ exit: \) the total frequency, \(n. \)

9: \(fail \) – NagError \(\text{Input/Output} \)
 The NAG error parameter (see the Essential Introduction).

6 Error Indicators and Warnings

NE_INT
\(On \ entry, \ k = \text{(value)}. \)
\(Constraint: \ k > 1. \)

NE_FREQ_CONS
Either \(ifreq[i] < 0 \) for some \(i, \) or the sum of frequencies is zero.

NE_FREQ_SUM
The total frequency is less than 2.
NE_NOT_INCREASING
On entry, \(x[i-2] > x[i-1] \): \(i = \langle \text{value} \rangle \), \(x[i-2] = \langle \text{value} \rangle \), \(x[i-1] = \langle \text{value} \rangle \).

NE_BAD_PARAM
On entry, parameter \(\langle \text{value} \rangle \) had an illegal value.

NE_INTERNAL_ERROR
An internal error has occurred in this function. Check the function call and any array sizes. If the call is correct then please consult NAG for assistance.

7 Accuracy
The method used is believed to be stable.

8 Further Comments
The time taken by nag_summary_stats_freq (g01adc) increases linearly with \(k \).

9 Example
In the example program, nprob determines the number of sets of data to be analysed. For each analysis, the boundary values of the classes and the frequencies are read. After nag_summary_stats_freq (g01adc) has been successfully called, the input data and calculated quantities are printed. In the example, there is one set of data, with 14 classes.

9.1 Program Text
/* nag_summary_stats_freq (g01adc) Example Program. *
 * Copyright 2001 Numerical Algorithms Group. *
 * Mark 7, 2001. */
#include <stdio.h>
#include <nag.h>
#include <naq_stdlib.h>
#include <nag01.h>

int main(void)
{
 /* Scalars */
 double xsd, xskew, xkurt, xmean;
 Integer exit_status, i, j, k, kmin1, n, nprob;
 NagError fail;
 /* Arrays */
 double *x=0;
 Integer *ifreq=0;
 INIT_FAIL(fail);
 Vprintf("g01adc Example Program Results
");
 /* Skip heading in data file */
 Vscanf("%*[\n] ");
 Vscanf("%ld%*[\n] ", &nprob);
 for (j = 1; j <= nprob; ++j)
 {
 Vscanf("%ld%*[\n] ", &kmin1);
 k = kmin1 + 1;
 ...
/* Allocate memory */
if (!(x = NAG_ALLOC(k, double)) ||
 !(ifreq = NAG_ALLOC(k, Integer)))
{
 Vprintf("Allocation failure\n");
 exit_status = -1;
 goto END;
}
for (i = 1; i <= kmin1; ++i)
 Vscanf("%lf%ld", &x[i - 1], &ifreq[i - 1]);
Vscanf("%lf*\[\n\] ", &x[k - 1]);
Vprintf("\nProblem %4ld\n", j);
Vprintf("Number of classes %4ld\n", kmin1);
g01adc(k, x, ifreq, &xmean, &xsd, &xskew, &xkurt, &n, &fail);
if (fail.code == NE_NOERROR)
{
 Vprintf("Successful call of g01adc\n\n");
 Vprintf(" Class Frequency\n\n");
 for (i = 1; i <= kmin1; ++i)
 Vprintf("%10.2f%10.2f%12ld\n", x[i - 1], x[i], ifreq[i - 1]);
 Vprintf("\n Mean %16.4f\n", xmean);
 Vprintf(" Std devn%13.4f\n", xsd);
 Vprintf(" Skewness%13.4f\n", xskew);
 Vprintf(" Kurtosis%13.4f\n", xkurt);
 Vprintf(" Number of cases%8ld\n", n);
}
else
{
 Vprintf("Error from g01adc.\n%s\n", fail.message);
 exit_status = 1;
}
if (x) NAG_FREE(x);
if (ifreq) NAG_FREE(ifreq);

END:
return exit_status;

9.2 Program Data

9.3 Program Results

Problem 1
Number of classes 14
Successful call of g01adc

<table>
<thead>
<tr>
<th>Class</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.30</td>
<td>12.00</td>
</tr>
<tr>
<td>12.00</td>
<td>14.00</td>
</tr>
<tr>
<td>14.00</td>
<td>16.00</td>
</tr>
<tr>
<td>16.00</td>
<td>18.00</td>
</tr>
<tr>
<td>18.00</td>
<td>20.00</td>
</tr>
</tbody>
</table>
20.00 22.00 115
22.00 24.00 86
24.00 26.00 70
26.00 28.00 49
28.00 30.00 31
30.00 32.00 16
32.00 34.00 6
34.00 36.00 8
36.00 39.70 7

Mean 21.4932
Std devn 4.9325
Skewness 0.7072
Kurtosis 0.5738
Number of cases 679