NAG C Library Function Document

nag_zsy_norm (f16ufc)

1 Purpose
nag_zsy_norm (f16ufc) calculates the value of the 1-norm, the infinity-norm, the Frobenius norm, or the maximum absolute value of the elements, of a complex \(n \) by \(n \) symmetric matrix.

2 Specification

```c
void nag_zsy_norm (Nag_OrderType order, Nag_NormType norm, Nag_UploType uplo, 
                 Integer n, const Complex a[], Integer pda, double *r, NagError *fail)
```

3 Description

Given a complex \(n \) by \(n \) symmetric matrix, \(A \), nag_zsy_norm (f16ufc) calculates one of the values given by

\[
\|A\|_1 = \max_j \sum_{i=1}^{n} |a_{ij}|
\]
\[
\|A\|_\infty = \max_i \sum_{j=1}^{n} |a_{ij}|
\]
\[
\|A\|_F = \left(\sum_{i=1}^{n} \sum_{j=1}^{n} |a_{ij}|^2 \right)^{1/2}
\]
\[
\max_{i,j} |a_{ij}|
\]

Note that, since \(A \) is symmetric, \(\|A\|_1 = \|A\|_\infty \).

4 References

5 Parameters

1: order – Nag_OrderType

 Input

 On entry: the order parameter specifies the two-dimensional storage scheme being used, i.e., row-major ordering or column-major ordering. C language defined storage is specified by order = Nag_RowMajor. See Section 2.2.1.4 of the Essential Introduction for a more detailed explanation of the use of this parameter.

 Constraint: order = Nag_RowMajor or Nag_ColMajor.

2: norm – Nag_NormType

 Input

 On entry: specifies the value to be returned:

 if norm = Nag_OneNorm, the 1-norm;
 if norm = Nag_Infnorm, the infinity-norm;
 if norm = Nag_FrobeniusNorm, the Frobenius (or Euclidean) norm;
if \(\text{norm} = \text{Nag_MaxNorm} \), the value \(\max_{i,j} |a_{ij}| \) (not a norm).

Constraint: \(\text{norm} = \text{Nag_OneNorm}, \text{Nag_InfNorm}, \text{Nag_FrobeniusNorm} \) or \(\text{Nag_MaxNorm} \).

3: \(\text{uplo} \) – Nag_UploType
 Input

 On entry: specifies whether the upper or lower triangular part of \(A \) is stored as follows:

 - if \(\text{uplo} = \text{Nag_Upper} \), the upper triangular part of \(A \) is stored;
 - if \(\text{uplo} = \text{Nag_Lower} \), the lower triangular part of \(A \) is stored.

Constraint: \(\text{uplo} = \text{Nag_Upper} \) or \(\text{Nag_Lower} \).

4: \(n \) – Integer
 Input

 On entry: \(n \), the order of the matrix \(A \).

Constraint: \(n \geq 0 \).

5: \(\text{a}[\text{dim}] \) – const Complex
 Input

 Note: the dimension, \(\text{dim} \), of the array \(\text{a} \) must be at least \(\max(1, \text{pda} \times n) \).

 If \(\text{order} = \text{Nag_ColMajor} \), the \((i,j) \)th element of the matrix \(A \) is stored in \(\text{a}[(j-1) \times \text{pda} + i - 1] \) and if \(\text{order} = \text{Nag_RowMajor} \), the \((i,j) \)th element of the matrix \(A \) is stored in \(\text{a}[(i-1) \times \text{pda} + j - 1] \).

 On entry: the \(n \) by \(n \) symmetric matrix \(A \). If \(\text{uplo} = \text{Nag_Upper} \), the upper triangle of \(A \) must be stored and the elements of the array below the diagonal are not referenced; if \(\text{uplo} = \text{Nag_Lower} \), the lower triangle of \(A \) must be stored and the elements of the array above the diagonal are not referenced.

6: \(\text{pda} \) – Integer
 Input

 On entry: the stride separating matrix row or column elements (depending on the value of \(\text{order} \)) in the array \(\text{a} \).

 Constraint: \(\text{pda} \geq \max(1, n) \).

7: \(r \) – double *
 Output

 On exit: the value of the norm specified by \(\text{norm} \).

8: \(\text{fail} \) – NagError *
 Input/Output

 The NAG error parameter (see the Essential Introduction).

6 Error Indicators and Warnings

NE_INT

On entry, \(n = (\text{value}) \).

Constraint: \(n \geq 0 \).

On entry, \(\text{pda} = (\text{value}) \).

Constraint: \(\text{pda} \geq \max(1, n) \).

NE_BAD_PARAM

On entry, parameter \((\text{value}) \) had an illegal value.

7 Accuracy

The BLAS standard requires accurate implementations which avoid unnecessary over/underflow (see section 2.7 of The BLAS Technical Forum Standard (2001)).
8 Further Comments

None.

9 Example

See Section 9 of the document for nag_zsycon (f07nuc).