NAG C Library Function Document

nag_zhb_norm (f16uec)

1 Purpose

nag_zhb_norm (f16uec) calculates the value of the 1-norm, the infinity-norm, the Frobenius norm, or the maximum absolute value of the elements, of a complex n by n Hermitian band matrix.

2 Specification

```c
void nag_zhb_norm (Nag_OrderType order, Nag_NormType norm, Nag_UploType uplo,
           Integer n, Integer k, const Complex ab[], Integer pdab, double *r,
           NagError *fail)
```

3 Description

Given a complex n by n Hermitian band matrix, A, nag_zhb_norm (f16uec) calculates one of the values given by

$$
||A||_1 = \max_j \sum_{i=1}^{n} |a_{ij}|
$$

$$
||A||_\infty = \max_i \sum_{j=1}^{n} |a_{ij}|
$$

$$
||A||_F = \left(\sum_{i=1}^{n} \sum_{j=1}^{n} |a_{ij}|^2 \right)^{1/2}
$$

$$
\max_{i,j} |a_{ij}|
$$

Note that, since A is symmetric, $||A||_1 = ||A||_\infty$.

4 References

5 Parameters

1: `order` – Nag_OrderType

 Input

 On entry: the `order` parameter specifies the two-dimensional storage scheme being used, i.e., row-major ordering or column-major ordering. C language defined storage is specified by `order = Nag_RowMajor`. See Section 2.2.1.4 of the Essential Introduction for a more detailed explanation of the use of this parameter.

 Constraint: `order = Nag_RowMajor` or `Nag_ColMajor`.

2: `norm` – Nag_NormType

 Input

 On entry: specifies the value to be returned:

 - if `norm = Nag_OneNorm`, the 1-norm;
 - if `norm = Nag_Infnorm`, the infinity-norm;
 - if `norm = Nag_FrobeniusNorm`, the Frobenius (or Euclidean) norm;
if \(\text{norm} = \text{Nag_MaxNorm} \), the value \(\max_{i,j} |a_{ij}| \) (not a norm).

Constraint: \(\text{norm} = \text{Nag_OneNorm}, \text{Nag_InfNorm}, \text{Nag_FrobeniusNorm} \) or \(\text{Nag_MaxNorm} \).

3: \(\text{uplo} \) – Nag_UploType
Input

On entry: specifies whether the upper or lower triangular part of \(A \) is stored as follows:

- if \(\text{uplo} = \text{Nag_Upper} \), the upper triangular part of \(A \) is stored;
- if \(\text{uplo} = \text{Nag_Lower} \), the lower triangular part of \(A \) is stored.

Constraint: \(\text{uplo} = \text{Nag_Upper} \) or \(\text{Nag_Lower} \).

4: \(n \) – Integer
Input

On entry: \(n \), the order of the matrix \(A \).

Constraint: \(n \geq 0 \).

5: \(k \) – Integer
Input

On entry: \(k \), the number of sub-diagonals or super-diagonals of the matrix \(A \).

Constraint: \(k \geq 0 \).

6: \(\text{ab}[\text{dim}] \) – const Complex
Input

Note: the dimension, \(\text{dim} \), of the array \(\text{ab} \) must be at least \(\max(1, \text{pdab} \times n) \).

On entry: the \(n \) by \(n \) Hermitian band matrix \(A \). This is stored as a notional two-dimensional array with row elements or column elements stored contiguously. The storage of elements \(a_{ij} \) depends on the \(\text{order} \) and \(\text{uplo} \) parameters as follows:

- if \(\text{order} = \text{Nag_ColMajor} \) and \(\text{uplo} = \text{Nag_Upper} \),
 \(a_{ij} \) is stored in \(\text{ab}[k + i - j + (j - 1) \times \text{pdab}] \), for \(j = 1, \ldots, n \) and
 \(i = \max(1, j - k), \ldots, j \);
- if \(\text{order} = \text{Nag_ColMajor} \) and \(\text{uplo} = \text{Nag_Lower} \),
 \(a_{ij} \) is stored in \(\text{ab}[i - j + (j - 1) \times \text{pdab}] \), for \(j = 1, \ldots, n \) and
 \(i = j, \ldots, \min(n, j + k) \);
- if \(\text{order} = \text{Nag_RowMajor} \) and \(\text{uplo} = \text{Nag_Upper} \),
 \(a_{ij} \) is stored in \(\text{ab}[j - i + (i - 1) \times \text{pdab}] \), for \(i = 1, \ldots, n \) and
 \(j = i, \ldots, \min(n, i + k) \);
- if \(\text{order} = \text{Nag_RowMajor} \) and \(\text{uplo} = \text{Nag_Lower} \),
 \(a_{ij} \) is stored in \(\text{ab}[k + j - i + (i - 1) \times \text{pdab}] \), for \(i = 1, \ldots, n \) and
 \(j = \max(1, i - k), \ldots, i \).

7: \(\text{pdab} \) – Integer
Input

On entry: the stride separating row or column elements (depending on the value of \(\text{order} \)) of the matrix \(A \) in the array \(\text{ab} \).

Constraints:

- if \(\text{order} = \text{Nag_ColMajor} \), \(\text{pdab} \geq k + 1 \);
- if \(\text{order} = \text{Nag_RowMajor} \), \(\text{pdab} \geq \max(1, n) \).

8: \(r \) – double *
Output

On exit: the value of the norm specified by \(\text{norm} \).

9: \(\text{fail} \) – NagError *
Input/Output

The NAG error parameter (see the Essential Introduction).
6 Error Indicators and Warnings

NE_INT
- On entry, \(n = \langle \text{value} \rangle \).
 - Constraint: \(n \geq 0 \).
- On entry, \(k = \langle \text{value} \rangle \).
 - Constraint: \(k \geq 0 \).
- On entry, \(pdab = \langle \text{value} \rangle \).
 - Constraint: \(pdab \geq k + 1 \).

NE_BAD_PARAM
- On entry, parameter \(\langle \text{value} \rangle \) had an illegal value.

7 Accuracy

The BLAS standard requires accurate implementations which avoid unnecessary over/underflow (see section 2.7 of The BLAS Technical Forum Standard (2001)).

8 Further Comments

None.

9 Example

See Section 9 of the document for nag_zpbcon (f07huc).