NAG C Library Function Document

nag_zhp_norm (f16udc)

1 Purpose

nag_zhp_norm (f16udc) calculates the value of the 1-norm, the infinity-norm, the Frobenius norm, or the maximum absolute value of the elements, of a complex \(n \) by \(n \) Hermitian matrix, stored in packed form.

2 Specification

void nag_zhp_norm (Nag_OrderType order, Nag_NormType norm, Nag_UploType uplo,
Integer n, const Complex ap[], double *r, NagError *fail)

3 Description

Given a complex \(n \) by \(n \) Hermitian matrix, \(A \), in packed storage, nag_zhp_norm (f16udc) calculates one of the values given by

\[
\|A\|_1 = \max_j \sum_{i=1}^{n} |a_{ij}|, \\
\|A\|_\infty = \max_i \sum_{j=1}^{n} |a_{ij}|, \\
\|A\|_F = \left(\sum_{i=1}^{n} \sum_{j=1}^{n} |a_{ij}|^2 \right)^{1/2}, \\
\max_{i,j} |a_{ij}|.
\]

Note that, since \(A \) is symmetric, \(\|A\|_1 = \|A\|_\infty \).

4 References

5 Parameters

1: \texttt{order} – Nag_OrderType \hspace{1cm} \textit{Input}

\textit{On entry}: the \texttt{order} parameter specifies the two-dimensional storage scheme being used, i.e., row-major ordering or column-major ordering. C language defined storage is specified by \texttt{order = Nag_RowMajor}. See Section 2.2.1.4 of the Essential Introduction for a more detailed explanation of the use of this parameter.

\textit{Constraint}: \texttt{order = Nag_RowMajor} or \texttt{Nag_ColMajor}.

2: \texttt{norm} – Nag_NormType \hspace{1cm} \textit{Input}

\textit{On entry}: specifies the value to be returned:

- if \texttt{norm = Nag_OneNorm}, the 1-norm;
- if \texttt{norm = Nag_InfNorm}, the infinity-norm;
- if \texttt{norm = Nag_FrobeniusNorm}, the Frobenius (or Euclidean) norm;
if \(\text{norm} = \text{Nag_MaxNorm} \), the value \(\max_{i,j} |a_{ij}| \) (not a norm).

\textit{Constraint: norm = Nag_OneNorm, Nag_InfNorm, Nag_FrobeniusNorm or Nag_MaxNorm}.

3: \(\text{uplo} \) – Nag_UploType

\textit{Input}

\textit{On entry:} specifies whether the upper or lower triangular part of \(A \) is stored as follows:

- if \(\text{uplo} = \text{Nag_Upper} \), the upper triangular part of \(A \) is stored;
- if \(\text{uplo} = \text{Nag_Lower} \), the lower triangular part of \(A \) is stored.

\textit{Constraint: uplo = Nag_Upper or Nag_Lower}.

4: \(n \) – Integer

\textit{Input}

\textit{On entry:} \(n \), the order of the matrix \(A \).

\textit{Constraint:} \(n \geq 0 \).

5: \(\text{ap}[\text{dim}] \) – const Complex

\textit{Input}

\textit{Note:} the dimension, \(\text{dim} \), of the array \(\text{ap} \) must be at least \(\max(1, n \times (n + 1)/2) \).

\textit{On entry:} the \(n \) by \(n \) Hermitian matrix \(A \), packed by rows or columns. The storage of elements \(a_{ij} \) depends on the \(\text{order} \) and \(\text{uplo} \) parameters as follows:

- if \(\text{order} = \text{Nag_ColMajor} \) and \(\text{uplo} = \text{Nag_Upper} \),
 \(a_{ij} \) is stored in \(\text{ap}[(j - 1) \times j/2 + i - 1] \), for \(i \leq j \);
- if \(\text{order} = \text{Nag_ColMajor} \) and \(\text{uplo} = \text{Nag_Lower} \),
 \(a_{ij} \) is stored in \(\text{ap}[(2n - j) \times (j - 1)/2 + i - 1] \), for \(i \geq j \);
- if \(\text{order} = \text{Nag_RowMajor} \) and \(\text{uplo} = \text{Nag_Upper} \),
 \(a_{ij} \) is stored in \(\text{ap}[(2n - i) \times (i - 1)/2 + j - 1] \), for \(i \leq j \);
- if \(\text{order} = \text{Nag_RowMajor} \) and \(\text{uplo} = \text{Nag_Lower} \),
 \(a_{ij} \) is stored in \(\text{ap}[(i - 1) \times i/2 + j - 1] \), for \(i \geq j \).

6: \(r \) – double *

\textit{Output}

\textit{On exit:} the value of the norm specified by \(\text{norm} \).

7: \(\text{fail} \) – NagError *

\textit{Input/Output}

The NAG error parameter (see the Essential Introduction).

6 \ Error Indicators and Warnings

NE_INT

On entry, \(n = (\text{value}) \).

\textit{Constraint:} \(n \geq 0 \).

NE_BAD_PARAM

On entry, parameter \((\text{value}) \) had an illegal value.

7 \ Accuracy

The BLAS standard requires accurate implementations which avoid unnecessary over/underflow (see section 2.7 of The BLAS Technical Forum Standard (2001)).
8 Further Comments

None.

9 Example

See Section 9 of the documents for nag_zppcon (f07guc) and nag_zhpcon (f07puc).