NAG C Library Function Document

nag_ztr_copy (f16tec)

1 Purpose

nag_ztr_copy (f16tec) copies a complex triangular matrix.

2 Specification

```c
void nag_ztr_copy (Nag_OrderType order, Nag_UploType uplo, Nag_TransType trans,
Nag_DiagType diag, Integer n, const Complex a[], Integer pda, Complex b[],
Integer pdb, NagError *fail)
```

3 Description

nag_ztr_copy (f16tec) performs the triangular matrix copy operations

\[B \leftarrow A, \quad B \leftarrow A^T \text{ or } B \leftarrow A^H. \]

where \(A \) and \(B \) are \(n \) by \(n \) complex triangular matrices.

4 References

5 Parameters

1: \texttt{order} – Nag_OrderType

\textit{Input}

\textit{On entry:} the \texttt{order} parameter specifies the two-dimensional storage scheme being used, i.e., row-major ordering or column-major ordering. C language defined storage is specified by \texttt{order = Nag_RowMajor}. See Section 2.2.1.4 of the Essential Introduction for a more detailed explanation of the use of this parameter.

\textit{Constraint:} \texttt{order = Nag_RowMajor} or \texttt{Nag_ColMajor}.

2: \texttt{uplo} – Nag_UploType

\textit{Input}

\textit{On entry:} specifies whether the upper or lower triangular part of \(A \) is stored as follows:

- if \texttt{uplo = Nag_Upper}, the upper triangular part of \(A \) is stored;
- if \texttt{uplo = Nag_Lower}, the lower triangular part of \(A \) is stored.

\textit{Constraint:} \texttt{uplo = Nag_Upper} or \texttt{Nag_Lower}.

3: \texttt{trans} – Nag_TransType

\textit{Input}

\textit{On entry:} specifies the operation to be performed as follows:

- if \texttt{trans = Nag_NoTrans}, \(B \leftarrow A \);
- if \texttt{trans = Nag_Trans}, \(B \leftarrow A^T \);
- if \texttt{trans = Nag_ConjTrans}, \(B \leftarrow A^H \).

\textit{Constraint:} \texttt{trans = Nag_NoTrans, Nag_Trans or Nag_ConjTrans}.

4: \texttt{diag} – Nag_DiagType

\textit{Input}

\textit{On entry:} specifies whether \(A \) has non-unit or unit diagonal elements, as follows:
if \(\text{diag} = \text{Nag_NonUnitDiag} \), the diagonal elements are stored explicitly;

if \(\text{diag} = \text{Nag_UnitDiag} \), the diagonal elements are assumed to be 1, and are not referenced.

\[\text{Constraint: } \text{diag} = \text{Nag_NonUnitDiag} \text{ or } \text{Nag_UnitDiag}. \]

5: \(n \) – Integer

On entry: \(n \), the order of the matrices \(A \) and \(B \).

\[\text{Constraint: } n \geq 0. \]

6: \(a[\text{dim}] \) – const Complex

\[\text{Input} \]

Note: the dimension, \(\text{dim} \), of the array \(a \) must be at least \(\max(1, pda \times n) \).

If \(\text{order} = \text{Nag_ColMajor} \), the \((i, j)\)th element of the matrix \(A \) is stored in \(a[(j - 1) \times pda + i - 1] \) and if \(\text{order} = \text{Nag_RowMajor} \), the \((i, j)\)th element of the matrix \(A \) is stored in \(a[(i - 1) \times pda + j - 1] \).

On entry: the \(n \) by \(n \) triangular matrix \(A \). If \(\text{uplo} = \text{Nag_Upper} \) \(A \) is upper triangular and the elements of the array below the diagonal are not referenced; if \(\text{uplo} = \text{Nag_Lower} \) \(A \) is lower triangular and the elements of the array above the diagonal are not referenced.

7: \(pda \) – Integer

\[\text{Input} \]

On entry: the stride separating matrix row or column elements (depending on the value of \(\text{order} \)) in the array \(a \).

\[\text{Constraint: } pda \geq \max(1, n). \]

8: \(b[\text{dim}] \) – Complex

\[\text{Output} \]

Note: the dimension, \(\text{dim} \), of the array \(b \) must be at least \(\max(1, pdb \times n) \).

If \(\text{order} = \text{Nag_ColMajor} \), the \((i, j)\)th element of the matrix \(B \) is stored in \(b[(j - 1) \times pdb + i - 1] \) and if \(\text{order} = \text{Nag_RowMajor} \), the \((i, j)\)th element of the matrix \(B \) is stored in \(b[(i - 1) \times pdb + j - 1] \).

On exit: the \(n \) by \(n \) triangular matrix \(B \). If \(\text{uplo} = \text{Nag_Upper} \) \(B \) is upper triangular and the elements of the array below the diagonal are not set; if \(\text{uplo} = \text{Nag_Lower} \) \(B \) is lower triangular and the elements of the array above the diagonal are not set.

9: \(pdb \) – Integer

\[\text{Input} \]

On entry: the stride separating matrix row or column elements (depending on the value of \(\text{order} \)) in the array \(b \).

\[\text{Constraint: } pdb \geq \max(1, n). \]

10: \(\text{fail} \) – NagError *

\[\text{Input/Output} \]

The NAG error parameter (see the Essential Introduction).

6 Error Indicators and Warnings

\(\text{NE_INT} \)

On entry, \(n = \langle \text{value} \rangle \).

Constraint: \(n \geq 0 \).

On entry, \(pda = \langle \text{value} \rangle \).

Constraint: \(pda \geq \max(1, n) \).

On entry, \(pdb = \langle \text{value} \rangle \).

Constraint: \(pdb \geq \max(1, n) \).

\(\text{NE_BAD_PARAM} \)

On entry, parameter \(\langle \text{value} \rangle \) had an illegal value.
7 Accuracy

The BLAS standard requires accurate implementations which avoid unnecessary over/underflow (see section 2.7 of The BLAS Technical Forum Standard (2001)).

8 Further Comments

None.

9 Example

None.