NAG C Library Function Document

nag_dgb_norm (f16rbc)

1 Purpose
nag_dgb_norm (f16rbc) calculates the value of the 1-norm, the infinity-norm, the Frobenius norm, or the maximum absolute value of the elements, of a real m by n band matrix.

2 Specification
void nag_dgb_norm (Nag_OrderType order, Nag_NormType norm, Integer m, Integer n, Integer kl, Integer ku, const double ab[], Integer pdab, double *r, NagError *fail)

3 Description
Given a real m by n band matrix, A, nag_dgb_norm (f16rbc) calculates one of the values given by

\[\|A\|_1 = \max_j \sum_{i=1}^{m} |a_{ij}|, \]

\[\|A\|_\infty = \max_i \sum_{j=1}^{n} |a_{ij}|, \]

\[\|A\|_F = \left(\sum_{i=1}^{m} \sum_{j=1}^{n} |a_{ij}|^2 \right)^{1/2}, \]

\[\max_{i,j} |a_{ij}|. \]

4 References

5 Parameters
1: order – Nag_OrderType

On entry: the order parameter specifies the two-dimensional storage scheme being used, i.e., row-major ordering or column-major ordering. C language defined storage is specified by order = Nag_RowMajor. See Section 2.2.1.4 of the Essential Introduction for a more detailed explanation of the use of this parameter.

Constraint: order = Nag_RowMajor or Nag_ColMajor.

2: norm – Nag_NormType

On entry: specifies the value to be returned:

if norm = Nag_OneNorm, the 1-norm;
if norm = Nag_Infnorm, the infinity-norm;
if norm = Nag_FrobeniusNorm, the Frobenius (or Euclidean) norm;
if norm = Nag_MaxNorm, the value max \(i,j |a_{ij}| \) (not a norm).

Constraint: norm = Nag_OneNorm, Nag_Infnorm, Nag_FrobeniusNorm or Nag_MaxNorm.
3: \(m \) – Integer \hspace{1cm} \text{Input}

On entry: \(m \), the number of rows of the matrix \(A \).
Constraint: \(m \geq 0 \).

4: \(n \) – Integer \hspace{1cm} \text{Input}

On entry: \(n \), the number of columns of the matrix \(A \).
Constraint: \(n \geq 0 \).

5: \(k_l \) – Integer \hspace{1cm} \text{Input}

On entry: \(k_l \), the number of sub-diagonals within the band of \(A \).
Constraint: \(k_l \geq 0 \).

6: \(k_u \) – Integer \hspace{1cm} \text{Input}

On entry: \(k_u \), the number of super-diagonals within the band of \(A \).
Constraint: \(k_u \geq 0 \).

7: \(ab \) \[\text{dim}\] – const double \hspace{1cm} \text{Input}

Note: the dimension, \(\text{dim} \), of the array \(ab \) must be at least \(\max(1,pdab \times n) \) when \(\text{order} = \text{Nag} _\text{ColMajor} \) and at least \(\max(1,pdab \times m) \) when \(\text{order} = \text{Nag} _\text{RowMajor} \).

On entry: the \(m \) by \(n \) matrix \(A \). This is stored as a notional two-dimensional array with row elements or column elements stored contiguously. The storage of elements \(a_{ij} \), for \(i = 1, \ldots, m \) and \(j = \max(1,i - k_l), \ldots, \min(n,i + k_u) \), depends on the \text{order} parameter as follows:
- if \(\text{order} = \text{Nag} _\text{ColMajor} \), \(a_{ij} \) is stored as \(ab[(j - 1) \times pdab + kl + ku + i - j] \);
- if \(\text{order} = \text{Nag} _\text{RowMajor} \), \(a_{ij} \) is stored as \(ab[(i - 1) \times pdab + kl + j - i] \).

8: \(pdab \) – Integer \hspace{1cm} \text{Input}

On entry: the stride separating row or column elements (depending on the value of \text{order}) of the matrix \(A \) in the array \(ab \).
Constraint: \(pdab \geq kl + ku + 1 \).

9: \(r \) – double * \hspace{1cm} \text{Output}

On exit: the value of the norm specified by \text{norm}.

10: \(\text{fail} \) – NagError * \hspace{1cm} \text{Input/Output}

The NAG error parameter (see the Essential Introduction).

6 Error Indicators and Warnings

NE_INT

On entry, \(m = \langle \text{value} \rangle \).
Constraint: \(m \geq 0 \).

On entry, \(n = \langle \text{value} \rangle \).
Constraint: \(n \geq 0 \).

On entry, \(k_l = \langle \text{value} \rangle \).
Constraint: \(k_l \geq 0 \).

On entry, \(k_u = \langle \text{value} \rangle \).
Constraint: \(k_u \geq 0 \).
On entry, \(\text{pdab} = \langle \text{value} \rangle \).
Constraint: \(\text{pdab} \geq \text{kl} + \text{ku} + 1 \).

NE_BAD_PARAM
On entry, parameter \(\langle \text{value} \rangle \) had an illegal value.

7 Accuracy
The BLAS standard requires accurate implementations which avoid unnecessary over/underflow (see section 2.7 of The BLAS Technical Forum Standard (2001)).

8 Further Comments
None.

9 Example
None.