nag_sparse_sym_chol_sol (f11jcc)

1. Purpose
nag_sparse_sym_chol_sol (f11jcc) solves a real sparse symmetric system of linear equations, represented in symmetric coordinate storage format, using a conjugate gradient or Lanczos method, with incomplete Cholesky preconditioning.

2. Specification
#include <nag.h>
#include <nagf11.h>

void nag_sparse_sym_chol_sol(Nag_SparseSym_Method method, Integer n,
Integer nnz, double a[], Integer la, Integer irow[],
Integer icol[], Integer ipiv[], Integer istr[], double b[],
double tol, Integer maxitn, double x[], double *rnorm,
Integer *itn, Nag_Sparse_Comm *comm, NagError *fail)

3. Description
This routine solves a real sparse symmetric linear system of equations:

\[Ax = b, \]

using a preconditioned conjugate gradient method (Meijerink and van der Vorst (1977)), or a preconditioned Lanczos method based on the algorithm SYMMLQ (Paige and Saunders (1975)). The conjugate gradient method is more efficient if \(A \) is positive-definite, but may fail to converge for indefinite matrices. In this case the Lanczos method should be used instead. For further details see Barrett et al. (1994).

nag_sparse_sym_chol_sol uses the incomplete Cholesky factorization determined by nag_sparse_sym_chol_fac (f11jac) as the preconditioning matrix. A call to nag_sparse_sym_chol_sol must always be preceded by a call to nag_sparse_sym_chol_fac (f11jac). Alternative preconditioners for the same storage scheme are available by calling nag_sparse_sym_sol (f11jec).

The matrix \(A \), and the preconditioning matrix \(M \), are represented in symmetric coordinate storage (SCS) format (see Section 2.1.2. of the Chapter Introduction) in the arrays \(a \), \(irow \) and \(icol \), as returned from nag_sparse_sym_chol_fac (f11jac). The array \(a \) holds the non-zero entries in the lower triangular parts of these matrices, while \(irow \) and \(icol \) hold the corresponding row and column indices.

4. Parameters
method
Input: specifies the iterative method to be used. The possible choices are:

if \(\text{method} = \text{Nag}_\text{SparseSym}_\text{CG} \) then the conjugate gradient method is used;
if \(\text{method} = \text{Nag}_\text{SparseSym}_\text{Lanczos} \) then the Lanczos method, SYMMLQ is used.

Constraint: \(\text{method} = \text{Nag}_\text{SparseSym}_\text{CG} \) or \(\text{Nag}_\text{SparseSym}_\text{Lanczos} \).

n
Input: the order of the matrix \(A \). This must be the same value as was supplied in the preceding call to nag_sparse_sym_chol_fac (f11jac).
Constraint: \(n \geq 1 \).

nnz
Input: the number of non-zero elements in the lower triangular part of the matrix \(A \). This must be the same value as was supplied in the preceding call to nag_sparse_sym_chol_fac (f11jac).
Constraint: \(1 \leq \text{nnz} \leq n \times (n+1)/2 \).
nag_sparse_sym_chol_sol

a[la]
Input: the values returned in array \(a\) by a previous call to `nag_sparse_sym_chol_fac` (f11jac).

la
Input: the dimension of the arrays \(a\), \(irow\) and \(icol\), this must be the same value as returned by a previous call to `nag_sparse_sym_chol_fac` (f11jac).
Constraint: \(la \geq 2 \times nnz\).

irow[la]

icol[la]

ipiv[n]

istr[n+1]
Input: the values returned in the arrays \(irow\), \(icol\), \(ipiv\) and \(istr\) by a previous call to `nag_sparse_sym_chol_fac` (f11jac).

b[n]
Input: the right-hand side vector \(b\).

tol
Input: the required tolerance. Let \(x_k\) denote the approximate solution at iteration \(k\), and \(r_k\) the corresponding residual. The algorithm is considered to have converged at iteration \(k\) if:
\[
\|r_k\|_{\infty} \leq \tau \times (\|b\|_{\infty} + \|A\|_{\infty} \|x_k\|_{\infty}).
\]
If \(tol \leq 0.0\), \(\tau = \max(\sqrt{\epsilon}, \sqrt{n} \epsilon)\) is used, where \(\epsilon\) is the machine precision. Otherwise \(\tau = \max(tol, 10 \epsilon, \sqrt{n} \epsilon)\) is used.
Constraint: \(tol < 1.0\).

maxitn
Input: the maximum number of iterations allowed.
Constraint: \(maxitn \geq 1\).

x[n]
Input: an initial approximation to the solution vector \(x\).
Output: an improved approximation to the solution vector \(x\).

rnorm
Output: the final value of the residual norm \(\|r_k\|_{\infty}\), where \(k\) is the output value of \(itn\).

itn
Output: the number of iterations carried out.

comm
Input/Output: a pointer to a structure of type `Nag_Sparse_Comm` whose members are used by the iterative solver.

fail
The NAG error parameter, see the Essential Introduction to the NAG C Library.

5. Error Indications and Warnings

NE_BAD_PARAM
On entry, parameter `method` had an illegal value.

NE_INT_ARG_LT
On entry, \(n\) must not be less than 1: \(n = \langle value\rangle\).
On entry, `maxitn` must not be less than 1: \(maxitn = \langle value\rangle\).

NE_INT_2
On entry, \(nnz = \langle value\rangle\), \(n = \langle value\rangle\).
Constraint: \(1 \leq nnz \leq n \times (n+1)/2\).

NE_REAL_ARG_GE
On entry, `tol` must not be greater than or equal to 1.0: \(tol = \langle value\rangle\).
6. Further Comments
The time taken by \texttt{nag_sparse_sym_chol_sol} for each iteration is roughly proportional to the value of \texttt{nnz} returned from the preceding call to \texttt{nag_sparse_sym_chol_fac (f11jac)}. One iteration with the Lanczos method (SYMMLQ) requires a slightly larger number of operations than one iteration with the conjugate gradient method.

The number of iterations required to achieve a prescribed accuracy cannot be easily determined a priori, as it can depend dramatically on the conditioning and spectrum of the preconditioned matrix \(A = M^{-1}A \).

Some illustrations of the application of \texttt{nag_sparse_sym_chol_sol} to linear systems arising from the discretization of two-dimensional elliptic partial differential equations, and to random-valued randomly structured symmetric positive-definite linear systems, can be found in Salvini and Shaw (1995).

6.1. Accuracy
On successful termination, the final residual \(r_k = b - Ax_k \), where \(k = \text{itn} \), satisfies the termination criterion
\[
\|r_k\|_\infty \leq \tau \times (\|b\|_\infty + \|A\|_\infty \|x_k\|_\infty).
\]
The value of the final residual norm is returned in \texttt{rnorm}.

6.2. References

See Also

nag_sparse_sym_chol_fac (f11jac)
nag_sparse_sym_sol (f11jec)
nag_sparse_sym_sort (f11zbc)

Example

This example program solves a symmetric positive-definite system of equations using the conjugate gradient method, with incomplete Cholesky preconditioning.

Program Text

```c
#include <nag.h>
#include <stdio.h>
#include <nag_stdlib.h>
#include <nag_string.h>
#include <nagf11.h>

main()
{
    double dtol;
    double *a=0, *b=0;
    double *x=0;
    double rnorm, dscale;
    double tol;
    Integer *icol=0;
    Integer *ipiv=0, nnzc, *irow=0, *istr=0;
    Integer i;
    Integer n;
    Integer lfill, npivm;
    Integer maxitn;
    Integer itn;
    Integer nnz;
    Integer num;
    Nag_SparseSym_Method method;
    Nag_SparseSym_Piv pstrat;
    Nag_SparseSym_Fact mic;
    Nag_Sparse_Comm comm;
    char char_enum[20];

    Vprintf("f11jcc Example Program Results\n");
    printf("\%*\n\n");// Skip heading in data file */
    Vscanf(" %*[^\n]");
    /* Read algorithmic parameters */
    Vscanf("%ld%*[\n]&n");
    Vscanf("%ld%*[\n]&nnz");
    Vscanf("%ld%lf%*[\n]%lfill, &dtol");
    Vscanf("%s%*[\n]%s",char_enum);
    if (!strcmp(char_enum, "CG"))
        method = Nag_SparseSym_CG;
    else if (!strcmp(char_enum, "Lanczos"))
        method = Nag_SparseSym_Lanczos;
    else
    {
        Vprintf("Unrecognised string for method enum representation.\n");
        exit(EXIT_FAILURE);
    }
```

Vscanf("%s%lf*[\n]",char_enum, &dscale);
if (!strcmp(char_enum, "ModFact"))
 mic = Nag_SparseSym_ModFact;
else if (!strcmp(char_enum, "UnModFact"))
 mic = Nag_SparseSym_UnModFact;
else
{
 Vprintf("Unrecognised string for mic enum representation.\n");
 exit(EXIT_FAILURE);
}

Vscanf("%s*\[\n]",char_enum);
if (!strcmp(char_enum, "NoPiv"))
 pstrat = Nag_SparseSym_NoPiv;
else if (!strcmp(char_enum, "MarkPiv"))
 pstrat = Nag_SparseSym_MarkPiv;
else if (!strcmp(char_enum, "UserPiv"))
 pstrat = Nag_SparseSym_UserPiv;
else
{
 Vprintf("Unrecognised string for pstrat enum representation.\n");
 exit(EXIT_FAILURE);
}

Vscanf("%lf%ld*\[\n]",&tol, &maxitn);

/* Read the matrix a */
num = 2 * nnz;
irow = NAG_ALLOC(num,Integer);
icol = NAG_ALLOC(num,Integer);
a = NAG_ALLOC(num,double);
b = NAG_ALLOC(n,double);
x = NAG_ALLOC(n,double);
istr = NAG_ALLOC(n+1,Integer);
ipiv = NAG_ALLOC(num,Integer);

if (!irow || !icol || !a || !x || !istr ||!ipiv)
{
 Vprintf("Allocation failure\n");
 exit(EXIT_FAILURE);
}

for (i = 1; i <= nnz; ++i)
 Vscanf("%lf%ld%ld*\[\n]",&a[i-1], &irow[i-1], &icol[i-1]);

/* Read right-hand side vector b and initial approximate solution x */
for (i = 1; i <= n; ++i)
 Vscanf("%lf",&b[i-1]);
Vscanf("%*[\n]");

for (i = 1; i <= n; ++i)
 Vscanf("%lf",&x[i-1]);
Vscanf("%*[\n]");

/* Calculate incomplete Cholesky factorization */
f11jac(n, nnz, &a, &num, &irow, &icol, lfill, dtol, mic,
 dscale, pstrat, ipiv, istr, &nnzc, &npivm, &comm, NAGERR_DEFAULT);

/* Solve Ax = b */
f11jcc(method, n, nnz, &a, num, irow, icol, ipiv, istr, b,
 tol, maxitn, x, &rnorm, &itn, &comm, NAGERR_DEFAULT);

Vprintf("%s%10ld%*\n","Converged in",itn," iterations");
Vprintf("%s%16.3e%*\n","Final residual norm =",rnorm);
nag_sparse_sym_chol_sol

NAG C Library Manual

/* Output x */
for (i = 1; i <= n; ++i)
 Vprintf(" %16.4e\n",x[i-1]);

NAG_FREE(irow);
NAG_FREE(icol);
NAG_FREE(a);
NAG_FREE(b);
NAG_FREE(x);
NAG_FREE(ipiv);
NAG_FREE(istr);
exit (EXIT_SUCCESS);
}

8.2. Program Data

f11jcc Example Program Data

<table>
<thead>
<tr>
<th></th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>16</td>
</tr>
<tr>
<td>1</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>lfill, dtol</td>
</tr>
<tr>
<td></td>
<td>method</td>
</tr>
<tr>
<td></td>
<td>UnModFact 0.0</td>
</tr>
<tr>
<td></td>
<td>mic, dscale</td>
</tr>
<tr>
<td></td>
<td>MarkPiv</td>
</tr>
<tr>
<td></td>
<td>pstrat</td>
</tr>
<tr>
<td></td>
<td>1.0e-6</td>
</tr>
<tr>
<td></td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>tol, maxitn</td>
</tr>
</tbody>
</table>

4. 1 1
1. 2 1
5. 2 2
2. 3 3
2. 4 2
3. 4 4
-1. 5 1
1. 5 4
4. 5 5
1. 6 2
-2. 6 5
3. 6 6
2. 7 1
-1. 7 2
-2. 7 3
5. 7 7

a[i-1], irow[i-1], icol[i-1], i=1,...,nnz

15. 18. -8. 21.
11. 10. 29. b[i-1], i=1,...,n
0. 0. 0. 0.
0. 0. 0. x[i-1], i=1,...,n

8.3. Program Results

f11jcc Example Program Results

Converged in 1 iterations
Final residual norm = 7.105e-15
1.0000e+00
2.0000e+00
3.0000e+00
4.0000e+00
5.0000e+00
6.0000e+00
7.0000e+00

3.f11jcc.6