NAG C Library Function Document
nag_dtgevc (f08ykc)

1 Purpose

nag_dtgevc (f08ykc) computes some or all of the right and/or left generalized eigenvectors of a pair of real matrices \((A, B)\) which are in generalized real Schur form.

2 Specification

```c
void nag_dtgevc (Nag_OrderType order, Nag_SideType side, Nag_HowManyType how_many, const Boolean select[], Integer n, const double a[], Integer pda, const double b[], Integer pdb, const double vl[], Integer pdvl, const double vr[], Integer pdvr, Integer mm, Integer *m, NagError *fail)
```

3 Description

nag_dtgevc (f08ykc) computes some or all of the right and/or left generalized eigenvectors of the matrix pair \((A, B)\) which is assumed to be in generalized upper Schur form. If the matrix pair \((A, B)\) is not in the generalized upper Schur form, then nag_dhgeqz (f08xec) should be called before invoking nag_dtgevc (f08ykc).

The right generalized eigenvector \(x\) and the left generalized eigenvector \(y\) of \((A, B)\) corresponding to a generalized eigenvalue \(\lambda\) are defined by

\[
(A - \lambda B)x = 0
\]

and

\[
y^H (A - \lambda B) = 0.
\]

If a generalized eigenvalue is determined as 0/0, which is due to zero diagonal elements at the same locations in both \(A\) and \(B\), a unit vector is returned as the corresponding eigenvector.

Note that the generalized eigenvalues are computed using nag_dhgeqz (f08xec) but nag_dtgevc (f08ykc) does not explicitly require the generalized eigenvalues to compute eigenvectors. The ordering of the eigenvectors is based on the ordering of the eigenvalues as computed by nag_dtgevc (f08ykc).

If all eigenvectors are requested, the function may either return the matrices \(X\) and/or \(Y\) of right or left eigenvectors of \((A, B)\), or the products \(ZX\) and/or \(QY\), where \(Z\) and \(Q\) are two matrices supplied by the user. Usually, \(Q\) and \(Z\) are chosen as the orthogonal matrices returned by nag_dhgeqz (f08xec). Equivalently, \(Q\) and \(Z\) are the left and right Schur vectors of the matrix pair supplied to nag_dhgeqz (f08xec). In that case, \(QY\) and \(ZX\) are the left and right generalized eigenvectors, respectively, of the matrix pair supplied to nag_dhgeqz (f08xec).

\(A\) must be block upper triangular; with 1 by 1 and 2 by 2 diagonal blocks. Corresponding to each 2 by 2 diagonal block is a complex conjugate pair of eigenvalues and eigenvectors; only one eigenvector of the pair is computed, namely the one corresponding to the eigenvalue with positive imaginary part. Each 1 by 1 block gives a real generalized eigenvalue and a corresponding eigenvector.

4 References

5 Parameters

1:
 order – Nag_OrderType
 Input

 On entry: the **order** parameter specifies the two-dimensional storage scheme being used, i.e., row-major ordering or column-major ordering. C language defined storage is specified by **order** = Nag_RowMajor. See Section 2.2.1.4 of the Essential Introduction for a more detailed explanation of the use of this parameter.

 Constraint: **order** = Nag_RowMajor or Nag_ColMajor.

2:
 side – Nag_SideType
 Input

 On entry: specifies the required sets of generalized eigenvectors:

 - if **side** = Nag_RightSide, only right eigenvectors are computed;
 - if **side** = Nag_LeftSide, only left eigenvectors are computed;
 - if **side** = Nag_BothSides, both left and right eigenvectors are computed.

 Constraint: **side** = Nag_BothSides, Nag_LeftSide or Nag_RightSide.

3:
 how_many – Nag_HowManyType
 Input

 On entry: specifies further details of the required generalized eigenvectors:

 - if **how_many** = Nag_ComputeAll, all right and/or left eigenvectors are computed;
 - if **how_many** = Nag_BackTransform, all right and/or left eigenvectors are computed; they are backtransformed using the input matrices supplied in arrays *vr* and/or *vl*;
 - if **how_many** = Nag_ComputeSelected, selected right and/or left eigenvectors, defined by the array *select*, are computed.

 Constraint: **how_many** = Nag_ComputeAll, Nag_BackTransform or Nag_ComputeSelected.

4:
 select[dim] – const Boolean
 Input

 Note: the dimension, **dim**, of the array **select** must be at least max(1, **n**) when **how_many** = Nag_ComputeSelected and at least 1 otherwise.

 On entry: specifies the eigenvectors to be computed if **how_many** = Nag_ComputeSelected. To select the generalized eigenvector corresponding to the jth generalized eigenvalue, the jth element of **select** should be set to TRUE; if the eigenvalue corresponds to a complex conjugate pair, then real and imaginary parts of eigenvectors corresponding to the complex conjugate eigenvalue pair will be computed.

 Constraint: **select[j]** = TRUE or FALSE for j = 0, 1, ..., **n** − 1.

5:
 n – Integer
 Input

 On entry: **n**, the order of the matrices *A* and *B*.

 Constraint: **n** ≥ 0.

6:
 a[dim] – const double
 Input

 Note: the dimension, **dim**, of the array **a** must be at least max(1, **pda** × **n**).

 If **order** = Nag_ColMajor, the (i, j)th element of the matrix *A* is stored in **a**[(j − 1) × **pda** + i − 1] and if **order** = Nag_RowMajor, the (i, j)th element of the matrix *A* is stored in **a**[(i − 1) × **pda** + j − 1].
On entry: the matrix pair \((A, B)\) must be in the generalized Schur form. Usually, this is the matrix \(A\) returned by nag_dhgeqz (f08xec).

7: \(\text{pda} \rightarrow \text{Integer} \quad \text{Input}\)

On entry: the stride separating matrix row or column elements (depending on the value of \(\text{order}\)) in the array \(a\).

Constraint: \(\text{pda} \geq \max(1, n)\).

8: \(\text{b}[\dim] \rightarrow \text{const double} \quad \text{Input}\)

Note: the dimension, \(\dim\), of the array \(b\) must be at least \(\max(1, \text{pdb} \times n)\).

If \(\text{order} = \text{Nag_ColMajor}\), the \((i, j)\)th element of the matrix \(B\) is stored in \(b[(j - 1) \times \text{pdb} + i - 1]\) and if \(\text{order} = \text{Nag_RowMajor}\), the \((i, j)\)th element of the matrix \(B\) is stored in \(b[(i - 1) \times \text{pdb} + j - 1]\).

On entry: the matrix pair \((A, B)\) must be in the generalized Schur form. If \(A\) has a 2 by 2 diagonal block then the corresponding 2 by 2 block of \(B\) must be diagonal with positive elements. Usually, this is the matrix \(B\) returned by nag_dhgeqz (f08xec).

9: \(\text{pdb} \rightarrow \text{Integer} \quad \text{Input}\)

On entry: the stride separating matrix row or column elements (depending on the value of \(\text{order}\)) in the array \(b\).

Constraint: \(\text{pdb} \geq \max(1, n)\).

10: \(\text{vl}[\dim] \rightarrow \text{double} \quad \text{Input/Output}\)

Note: the dimension, \(\dim\), of the array \(\text{vl}\) must be at least
\[
\max(1, \text{pdvl} \times \text{mm}) \quad \text{when} \quad \text{side} = \text{Nag_LeftSide} \quad \text{or} \quad \text{Nag_BothSides} \quad \text{and} \quad \text{order} = \text{Nag_ColMajor};
\]
\[
\max(1, \text{pdvl} \times n) \quad \text{when} \quad \text{side} = \text{Nag_LeftSide} \quad \text{or} \quad \text{Nag_BothSides} \quad \text{and} \quad \text{order} = \text{Nag_RowMajor};
\]
\[
1 \quad \text{when} \quad \text{side} = \text{Nag_RightSide}.
\]

If \(\text{order} = \text{Nag_ColMajor}\), the \((i, j)\)th element of the matrix is stored in \(\text{vl}[(j - 1) \times \text{pdvl} + i - 1]\) and if \(\text{order} = \text{Nag_RowMajor}\), the \((i, j)\)th element of the matrix is stored in \(\text{vl}[(i - 1) \times \text{pdvl} + j - 1]\).

On entry: if \(\text{how_many} = \text{Nag_BackTransform}\) and \(\text{side} = \text{Nag_LeftSide}\) or \(\text{Nag_BothSides}\), \(\text{vl}\) must be initialised to an \(n\) by \(n\) matrix \(Q\). Usually, this is the orthogonal matrix \(Q\) of left Schur vectors returned by nag_dhgeqz (f08xec).

On exit: if \(\text{side} = \text{Nag_LeftSide}\) or \(\text{Nag_BothSides}\), \(\text{vl}\) contains:

if \(\text{how_many} = \text{Nag_ComputeAll}\), the matrix \(Y\) of left eigenvectors of \((A, B)\);

if \(\text{how_many} = \text{Nag_BackTransform}\), the matrix \(QY\);

if \(\text{how_many} = \text{Nag_ComputeSelected}\), the left eigenvectors of \((A, B)\) specified by \(\text{select}\), stored consecutively in the rows or columns (depending on the value of \(\text{order}\)) of the array \(\text{vl}\), in the same order as their corresponding eigenvalues.

A complex eigenvector corresponding to a complex eigenvalue is stored in two consecutive rows or columns, the first holding the real part, and the second the imaginary part.

11: \(\text{pdvl} \rightarrow \text{Integer} \quad \text{Input}\)

On entry: the stride separating matrix row or column elements (depending on the value of \(\text{order}\)) in the array \(\text{vl}\).

Constraints:

if \(\text{order} = \text{Nag_ColMajor}\),

if \(\text{side} = \text{Nag_LeftSide}\) or \(\text{Nag_BothSides}\), \(\text{pdvl} \geq \max(1, n)\);
if side = Nag_RightSide, pdvl ≥ 1;

if order = Nag_RowMajor,
 if side = Nag_LeftSide or Nag_BothSides, pdvl ≥ max(1, mm);
 if side = Nag_RightSide, pdvl ≥ 1.

12: vr[dim] – double

Note: the dimension, dim, of the array vr must be at least
 \(\max(1, pdvr \times mm) \) when side = Nag_RightSide or Nag_BothSides and
 order = Nag_ColMajor;
 \(\max(1, pdvr \times n) \) when side = Nag_RightSide or Nag_BothSides and
 order = Nag_RowMajor;
 1 when side = Nag_LeftSide.

If order = Nag_ColMajor, the \((i, j)\)th element of the matrix is stored in
 \(vr[(j - 1) \times pdvr + i - 1] \) and
if order = Nag_RowMajor, the \((i, j)\)th element of the matrix is stored in
 \(vr[(i - 1) \times pdvr + j - 1] \).

On entry: if how_many = Nag_BackTransform and side = Nag_RightSide or Nag_BothSides, vr
must be initialised to an \(n \) by \(n \) matrix \(Z \). Usually, this is the orthogonal matrix \(Z \) of right Schur
vectors returned by nag_dhgeqz (f08xec).
On exit: if side = Nag_RightSide or Nag_BothSides, vr contains:
 if how_many = Nag_ComputeAll, the matrix \(X \) of right eigenvectors of \((A, B) \);
 if how_many = Nag_BackTransform, the matrix \(ZX \);
 if how_many = Nag_ComputeSelected, the right eigenvectors of \((A, B) \) specified by select,
 stored consecutively in the rows or columns (depending on the value of order) of the array
 vr, in the same order as their corresponding eigenvalues.

A complex eigenvector corresponding to a complex eigenvalue is stored in two consecutive rows or
columns, the first holding the real part, and the second the imaginary part.

13: pdvr – Integer

On entry: the stride separating matrix row or column elements (depending on the value of order) in
the array vr.

Constraints:
 if order = Nag_ColMajor,
 if side = Nag_RightSide or Nag_BothSides, pdvr ≥ max(1, n);
 if side = Nag_LeftSide, pdvr ≥ 1;
 if order = Nag_RowMajor,
 if side = Nag_RightSide or Nag_BothSides, pdvr ≥ max(1, mm);
 if side = Nag_LeftSide, pdvr ≥ 1.

14: mm – Integer

On entry: the number of columns in the arrays vl and/or vr.

Constraints:
 if how_many = Nag_ComputeAll or Nag_BackTransform, mm ≥ n;
 if how_many = Nag_ComputeSelected, mm must not be less than the number of requested
eigenvectors.

15: m – Integer *

On exit: the number of columns in the arrays vl and/or vr actually used to store the eigenvectors. If
how_many = Nag_ComputeAll or Nag_BackTransform, m is set to n. Each selected real
eigenvector occupies one row or column and each selected complex eigenvector occupies two rows
or columns.
6 Error Indicators and Warnings

NE_INT

On entry, \(n = \langle \text{value} \rangle\).
Constraint: \(n \geq 0\).

On entry, \(pda = \langle \text{value} \rangle\).
Constraint: \(pda > 0\).

On entry, \(pdb = \langle \text{value} \rangle\).
Constraint: \(pdb > 0\).

On entry, \(pdvl = \langle \text{value} \rangle\).
Constraint: \(pdvl > 0\).

On entry, \(pdvr = \langle \text{value} \rangle\).
Constraint: \(pdvr > 0\).

NE_INT_2

On entry, \(pda = \langle \text{value} \rangle\), \(n = \langle \text{value} \rangle\).
Constraint: \(pda \geq \max(1, n)\).

On entry, \(pdb = \langle \text{value} \rangle\), \(n = \langle \text{value} \rangle\).
Constraint: \(pdb \geq \max(1, n)\).

NE_ENUM_INT_2

On entry, \(side = \langle \text{value} \rangle\), \(n = \langle \text{value} \rangle\), \(pdvl = \langle \text{value} \rangle\).
Constraint: if \(side = \text{Nag_LeftSide} \) or \(\text{Nag_BothSides}\), \(pdvl \geq \max(1, n)\); if \(side = \text{Nag_RightSide}\), \(pdvl \geq 1\).

On entry, \(side = \langle \text{value} \rangle\), \(n = \langle \text{value} \rangle\), \(pdvr = \langle \text{value} \rangle\).
Constraint: if \(side = \text{Nag_RightSide} \) or \(\text{Nag_BothSides}\), \(pdvr \geq \max(1, n)\); if \(side = \text{Nag_LeftSide}\), \(pdvr \geq 1\).

On entry, \(how_many = \langle \text{value} \rangle\), \(n = \langle \text{value} \rangle\), \(mm = \langle \text{value} \rangle\).
Constraint: if \(how_many = \text{Nag_ComputeAll} \) or \(\text{Nag_BackTransform}\), \(mm \geq n\); if \(how_many = \text{Nag_ComputeSelected}\), \(mm\) must not be less than the number of requested eigenvectors.

On entry, \(side = \langle \text{value} \rangle\), \(mm = \langle \text{value} \rangle\), \(pdvl = \langle \text{value} \rangle\).
Constraint: if \(side = \text{Nag_LeftSide} \) or \(\text{Nag_BothSides}\), \(pdvl \geq \max(1, mm)\); if \(side = \text{Nag_RightSide}\), \(pdvl \geq 1\).

On entry, \(side = \langle \text{value} \rangle\), \(mm = \langle \text{value} \rangle\), \(pdvr = \langle \text{value} \rangle\).
Constraint: if \(side = \text{Nag_RightSide} \) or \(\text{Nag_BothSides}\), \(pdvr \geq \max(1, mm)\); if \(side = \text{Nag_LeftSide}\), \(pdvr \geq 1\).

NE_CONSTRAINT

General constraint: select\([j]\) = TRUE or FALSE for \(j = 0, \ldots, n - 1\).

NE_NOT_COMPLEX

The 2 by 2 block \(\langle \text{value} \rangle : \langle \text{value} \rangle + 1\) does not have complex eigenvalues.

NE_ALLOC_FAIL

Memory allocation failed.
NE_BAD_PARAM
On entry, parameter value had an illegal value.

NE_INTERNAL_ERROR
An internal error has occurred in this function. Check the function call and any array sizes. If the call is correct then please consult NAG for assistance.

7 Accuracy
It is beyond the scope of this manual to summarize the accuracy of the solution of the generalized eigenvalue problem. Interested readers should consult section 4.11 of the LAPACK Users’ Guide (Anderson et al. (1999)) and Chapter 6 of Stewart and Sun (1990).

8 Further Comments
nag_dtgevc (f08ykc) is the sixth step in the solution of the real generalized eigenvalue problem and is called after nag_dhgeqz (f08xec). The complex analogue of this function is nag_ztgevc (f08yxc).

9 Example
The example program computes the α and β parameters, which defines the generalized eigenvalues and the corresponding left and right eigenvectors, of the matrix pair (A, B) given by

$$A = \begin{pmatrix}
1.0 & 1.0 & 1.0 & 1.0 & 1.0 \\
2.0 & 4.0 & 8.0 & 16.0 & 32.0 \\
3.0 & 9.0 & 27.0 & 81.0 & 243.0 \\
4.0 & 16.0 & 64.0 & 256.0 & 1024.0 \\
5.0 & 25.0 & 125.0 & 625.0 & 3125.0
\end{pmatrix}$$

and

$$B = \begin{pmatrix}
1.0 & 2.0 & 3.0 & 4.0 & 5.0 \\
1.0 & 4.0 & 9.0 & 16.0 & 25.0 \\
1.0 & 8.0 & 27.0 & 64.0 & 125.0 \\
1.0 & 16.0 & 81.0 & 256.0 & 625.0 \\
1.0 & 32.0 & 243.0 & 1024.0 & 3125.0
\end{pmatrix}$$

To compute generalized eigenvalues, it is required to call five functions: nag_dggbal (f08whc) to balance the matrix, nag_dgeqrf (f08aec) to perform the QR factorization of B, nag_dormqr (f08agc) to apply Q to A, nag_dgghrd (f08wec) to reduce the matrix pair to the generalized Hessenberg form and nag_dhgeqz (f08xec) to compute the eigenvalues via the QZ algorithm.

The computation of generalized eigenvectors is done by calling nag_dtgevc (f08ykc) to compute the eigenvectors of the balanced matrix pair. The function nag_dggbak (f08wjc) is called to backward transform the eigenvectors to the user-supplied matrix pair. If both left and right eigenvectors are required then nag_dggbak (f08wjc) must be called twice.

9.1 Program Text
/* nag_dtgevc (f08ykc) Example Program. */
* Copyright 2001 Numerical Algorithms Group.
*/
#include <stdio.h>
#include <nag.h>
#include <nag_stdlib.h>

f08ykc.6 [NP3645/7]
```c
#include <nagf08.h>
#include <nagx04.h>

int main(void)
{
    /* Scalars */
    Integer i, icols, ihi, ilo, irows, j, m, n, pda, pdb, pdq, pdz;
    Integer alpha_len, beta_len, scale_len, tau_len, select_len;
    Boolean ileft, iright;
    NagError fail;
    Nag_OrderType order;
    /* Arrays */
    double *a=0, *alphai=0, *alphar=0, *b=0, *beta=0, *lscale=0;
    double *q=0, *rscale=0, *tau=0, *z=0;
    Boolean *select=0;

    #ifdef NAG_COLUMN_MAJOR
    #define A(I,J) a[(J-1)*pda+I-1]
    #define B(I,J) b[(J-1)*pdb+I-1]
    #define Q(I,J) q[(J-1)*pdq+I-1]
    #define Z(I,J) z[(J-1)*pdz+I-1]
    order = Nag_ColMajor;
    #else
    #define A(I,J) a[(I-1)*pda+J-1]
    #define B(I,J) b[(I-1)*pdb+J-1]
    #define Q(I,J) q[(I-1)*pdq+J-1]
    #define Z(I,J) z[(I-1)*pdz+J-1]
    order = Nag_RowMajor;
    #endif

    INIT_FAIL(fail);
    Vprintf("f08ykc Example Program Results\n\n");
    /* ILEFT is TRUE if left eigenvectors are required */
    /* IRIGHT is TRUE if right eigenvectors are required */
    ileft = TRUE;
    iright = TRUE;
    /* Skip heading in data file */
    Vscanf("%*[^\n] ");
    Vscanf("%ld %*[^\n] ",&n);
    #ifdef NAG_COLUMN_MAJOR
    pda = n;
    pdb = n;
    pdq = n;
    pdz = n;
    #else
    pda = n;
    pdb = n;
    pdq = n;
    pdz = n;
    #endif
    alpha_len = n;
    beta_len = n;
    scale_len = n;
    tau_len = n;
    select_len = n;

    /* Allocate memory */
    if ( ! (a = NAG_ALLOC(n * n, double)) ||
         !(alphai = NAG_ALLOC(alpha_len, double)) ||
         !(alphar = NAG_ALLOC(alpha_len, double)) ||
         !(b = NAG_ALLOC(n * n, double)) ||
         !(lscale = NAG_ALLOC(scale_len, double)) ||
         !(rscale = NAG_ALLOC(scale_len, double)) ||
         !(q = NAG_ALLOC(n * n, double)) ||
```
!(tau = NAG_ALLOC(tau_len, double)) ||
!(z = NAG_ALLOC(n * n, double)) ||
!(select = NAG_ALLOC(select_len, Boolean))
{
Vprintf("Allocation failure\n");
exit_status = -1;
goto END;
}

/* READ matrix A from data file */
for (i = 1; i <= n; ++i)
{
 for (j = 1; j <= n; ++j)
 Vscanf("%lf", &A(i,j));
}
Vscanf("%*[\n]");

/* READ matrix B from data file */
for (i = 1; i <= n; ++i)
{
 for (j = 1; j <= n; ++j)
 Vscanf("%lf", &B(i,j));
}
Vscanf("%*[\n]");

/* Balance matrix pair (A,B) */
f08whc(order, Nag_DoBoth, n, a, pda, b, pdb, &ilo, &ihi, lscale,
 rscale, &fail);
if (fail.code != NE_NOERROR)
{
 Vprintf("Error from f08whc.\n%s\n", fail.message);
 exit_status = 1;
goto END;
}

/* Matrix A after balancing */
x04cac(order, Nag_GeneralMatrix, Nag_NonUnitDiag, n, n, a, pda,
 "Matrix A after balancing", 0, &fail);
if (fail.code != NE_NOERROR)
{
 Vprintf("Error from x04cac.\n%s\n", fail.message);
 exit_status = 1;
goto END;
}

/* Matrix B after balancing */
x04cac(order, Nag_GeneralMatrix, Nag_NonUnitDiag, n, n, b, pdb,
 "Matrix B after balancing", 0, &fail);
if (fail.code != NE_NOERROR)
{
 Vprintf("Error from x04cac.\n%s\n", fail.message);
 exit_status = 1;
goto END;
}
Vprintf("\n");

/* Reduce B to triangular form using QR */
irows = ihi + 1 - ilo;
icols = n + 1 - ilo;
f08aec(order, irows, icols, &B(ilo, ilo), pdb, tau, &fail);
if (fail.code != NE_NOERROR)
{
 Vprintf("Error from f08aec.\n%s\n", fail.message);
 exit_status = 1;
goto END;
}

/* Apply the orthogonal transformation to matrix A */
f08agc(order, Nag_LeftSide, Nag_Trans, irows, icols, irows,
 &B(ilo, ilo), pdb, tau, &A(ilo, ilo), pda, &fail);
if (fail.code != NE_NOERROR)
{

Vprintf("Error from f08agc.\n%s\n", fail.message);
exit_status = 1;
goto END;
}

/* Initialize Q (if left eigenvectors are required) */
if (ileft)
{
 for (i = 1; i <= n; ++i)
 {
 for (j = 1; j <= n; ++j)
 Q(i,j) = 0.0;
 Q(i,i) = 1.0;
 }
 for (i = ilo+1; i <= ilo+irows-1; ++i)
 {
 for (j = ilo; j <= MIN(i,ilo+irows-2); ++j)
 Q(i,j) = B(i,j);
 }
f08afc(order, irows, irows, irows, &Q(ilo, ilo), pdq, tau,
&fail);
if (fail.code != NE_NOERROR)
{
 Vprintf("Error from f08afc.\n%s\n", fail.message);
 exit_status = 1;
goto END;
}

/* Initialize Z (if right eigenvectors are required) */
if (iright)
{
 for (i = 1; i <= n; ++i)
 {
 for (j = 1; j <= n; ++j)
 Z(i,j) = 0.0;
 Z(i,i) = 1.0;
 }

/* Compute the generalized Hessenberg form of (A,B) */
f08wec(order, Nag_UpdateSchur, Nag_UpdateZ, n, ilo, ihi, a, pda,
b, pdb, q, pdq, z, pdz, &fail);
if (fail.code != NE_NOERROR)
{
 Vprintf("Error from f08wec.\n%s\n", fail.message);
 exit_status = 1;
goto END;
}

/* Matrix A in generalized Hessenberg form */
x04cac(order, Nag_GeneralMatrix, Nag_NonUnitDiag, n, n, a, pda,
"Matrix A in Hessenberg form", 0, &fail);
if (fail.code != NE_NOERROR)
{
 Vprintf("Error from x04cac.\n%s\n", fail.message);
 exit_status = 1;
goto END;
}
Vprintf("\n");

/* Matrix B in generalized Hessenberg form */
x04cac(order, Nag_GeneralMatrix, Nag_NonUnitDiag, n, n, b, pdb,
"Matrix B in Hessenberg form", 0, &fail);
if (fail.code != NE_NOERROR)
{
 Vprintf("Error from x04cac.\n%s\n", fail.message);
 exit_status = 1;
goto END;
}
/* Compute the generalized Schur form */
/* The Schur form also gives parameters */
/* required to compute generalized eigenvalues */
f08xec(order, Nag_Schur, Nag_AccumulateQ, Nag_AccumulateZ, n, ilo, ihi, a,
pda, b, pdb, alphar, alphai, beta, q, pdq, z, pdz, &fail);
if (fail.code != NE_NOERROR)
{
 Vprintf("Error from f08xec.\n\n", fail.message);
 exit_status = 1;
 goto END;
}
/* Print the generalized eigenvalue parameters */
Vprintf("\n Generalized eigenvalues\n");
for (i = 1; i <= n; ++i)
{
 if (beta[i-1] != 0.0)
 {
 Vprintf(" %4ld (%7.3f,%7.3f)\n", i,
 alphar[i-1]/beta[i-1], alphai[i-1]/beta[i-1]);
 } else
 Vprintf(" %4ldEigenvalue is infinite\n", i);
}
Vprintf("\n");
/* Compute left and right generalized eigenvectors */
/* of the balanced matrix */
f08ykc(order, Nag_BothSides, Nag_BackTransform, select, n, a, pda,
b, pdb, q, pdq, z, pdz, n, &m, &fail);
if (fail.code != NE_NOERROR)
{
 Vprintf("Error from f08ykc.\n\n", fail.message);
 exit_status = 1;
 goto END;
}
if (iright)
{
 /* Compute right eigenvectors of the original matrix */
 f08wjc(order, Nag_DoBoth, Nag_RightSide, n, ilo, ihi, lscale,
 rscale, n, z, pdz, &fail);
 if (fail.code != NE_NOERROR)
 {
 Vprintf("Error from f08wjc.\n\n", fail.message);
 exit_status = 1;
 goto END;
 }
 /* Print the right eigenvectors */
 x04cac(order, Nag_GeneralMatrix, Nag_NonUnitDiag, n, n, z, pdz,
 "Right eigenvectors", 0, &fail);
 if (fail.code != NE_NOERROR)
 {
 Vprintf("Error from x04cac.\n\n", fail.message);
 exit_status = 1;
 goto END;
 }
 Vprintf("\n");
}
/* Compute left eigenvectors of the original matrix */
if (ileft)
{
 f08wjc(order, Nag_DoBoth, Nag_LeftSide, n, ilo, ihi, lscale,
 rscale, n, q, pdq, &fail);
 if (fail.code != NE_NOERROR)
 {
 Vprintf("Error from f08wjc.\n\n", fail.message);
 exit_status = 1;
 goto END;
 }
}
*/ Print the left eigenvectors */
x04cac(order, Nag_GeneralMatrix, Nag_NonUnitDiag, n, n, q, pdq,
"Left eigenvectors", 0, &fail);
if (fail.code != NE_NOERROR)
{
 Vprintf("Error from x04cac.
%s
", fail.message);
 exit_status = 1;
goto END;
}

END:
if (a) NAG_FREE(a);
if (alphai) NAG_FREE(alphai);
if (alphar) NAG_FREE(alphar);
if (b) NAG_FREE(b);
if (beta) NAG_FREE(beta);
if (lscale) NAG_FREE(lscale);
if (q) NAG_FREE(q);
if (rscale) NAG_FREE(rscale);
if (tau) NAG_FREE(tau);
if (z) NAG_FREE(z);
if (select) NAG_FREE(select);

return exit_status;

9.2 Program Data
f08ykc Example Program Data
5 :Value of N
1.00 1.00 1.00 1.00 1.00
2.00 4.00 8.00 16.00 32.00
3.00 9.00 27.00 81.00 243.00
4.00 16.00 64.00 256.00 1024.00
5.00 25.00 125.00 625.00 3125.00 :End of matrix A
1.00 2.00 3.00 4.00 5.00
1.00 4.00 9.00 16.00 25.00
1.00 8.00 27.00 64.00 125.00
1.00 16.00 81.00 256.00 625.00
1.00 32.00 243.00 1024.00 3125.00 :End of matrix B

9.3 Program Results
f08ykc Example Program Results
Matrix A after balancing
1 2 3 4 5
1 1.0000 1.0000 0.1000 0.1000 0.1000
2 2.0000 4.0000 0.8000 1.6000 3.2000
3 0.3000 0.9000 0.2700 0.8100 2.4300
4 0.4000 1.6000 0.6400 2.5600 10.2400
5 0.5000 2.5000 1.2500 6.2500 31.2500
Matrix B after balancing
1 2 3 4 5
1 1.0000 2.0000 0.3000 0.4000 0.5000
2 1.0000 4.0000 0.9000 1.6000 2.5000
3 0.1000 0.8000 0.2700 0.6400 1.2500
4 0.1000 1.6000 0.8100 2.5600 6.2500
5 0.1000 3.2000 2.4300 10.2400 31.2500
Matrix A in Hessenberg form
1 2 3 4 5
1 -2.1898 -0.3181 2.0547 4.7371 -4.6249
2 -0.8395 -0.0426 1.1732 7.5194 -17.1850
3 0.0000 -0.2846 -1.1010 7.5927 26.4499
4 0.0000 0.0376 1.4070 -3.3643
5 0.0000 0.0000 0.3813 -0.9937
Matrix B in Hessenberg form

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-1.4248</td>
<td>-0.3476</td>
<td>2.1175</td>
<td>5.5813</td>
<td>-3.9269</td>
</tr>
<tr>
<td>2</td>
<td>0.0000</td>
<td>-0.0782</td>
<td>0.1189</td>
<td>8.0940</td>
<td>-15.2928</td>
</tr>
<tr>
<td>3</td>
<td>0.0000</td>
<td>0.0000</td>
<td>1.0021</td>
<td>-10.9356</td>
<td>26.5971</td>
</tr>
<tr>
<td>4</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.5820</td>
<td>-0.0730</td>
</tr>
<tr>
<td>5</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.5321</td>
</tr>
</tbody>
</table>

Generalized eigenvalues

1 (-2.437, 0.000)
2 (0.607, 0.795)
3 (0.607, -0.795)
4 (1.000, 0.000)
5 (-0.410, 0.000)

Right eigenvectors

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-4.9374e-02</td>
<td>-2.0772e-01</td>
<td>2.5702e-02</td>
<td>-7.4074e-02</td>
<td>-6.9466e-02</td>
</tr>
<tr>
<td>2</td>
<td>1.0606e-01</td>
<td>1.7848e-01</td>
<td>8.8325e-02</td>
<td>1.3545e-01</td>
<td>1.3605e-01</td>
</tr>
<tr>
<td>3</td>
<td>-1.0000e-01</td>
<td>-5.3742e-02</td>
<td>-4.6258e-02</td>
<td>-1.0000e-01</td>
<td>-1.0000e-01</td>
</tr>
<tr>
<td>4</td>
<td>4.3761e-02</td>
<td>8.0277e-03</td>
<td>1.3765e-02</td>
<td>2.6455e-02</td>
<td>3.1879e-02</td>
</tr>
<tr>
<td>5</td>
<td>-7.0192e-03</td>
<td>-5.5974e-04</td>
<td>-2.0807e-03</td>
<td>-3.7037e-03</td>
<td>-3.5534e-03</td>
</tr>
</tbody>
</table>

Left eigenvectors

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-6.9466e-02</td>
<td>-2.0922e-01</td>
<td>-5.2678e-03</td>
<td>-7.4074e-02</td>
<td>4.9374e-02</td>
</tr>
<tr>
<td>2</td>
<td>1.3605e-01</td>
<td>1.6346e-01</td>
<td>1.1371e-01</td>
<td>1.3545e-01</td>
<td>-1.0606e-01</td>
</tr>
<tr>
<td>3</td>
<td>-1.0000e-01</td>
<td>-4.6314e-02</td>
<td>-5.3686e-02</td>
<td>-1.0000e-01</td>
<td>1.0000e-01</td>
</tr>
<tr>
<td>4</td>
<td>3.1879e-02</td>
<td>5.9054e-03</td>
<td>1.4799e-02</td>
<td>2.6455e-02</td>
<td>-4.3761e-02</td>
</tr>
<tr>
<td>5</td>
<td>-3.5534e-03</td>
<td>-2.4617e-04</td>
<td>-2.1404e-03</td>
<td>-3.7037e-03</td>
<td>7.0192e-03</td>
</tr>
</tbody>
</table>