NAG C Library Function Document

nag_zggbal (f08wvc)

1 Purpose

nag_zggbal (f08wvc) balances a pair of complex square matrices \((A, B)\) of order \(n\). Balancing usually improves the accuracy of computed generalized eigenvalues and eigenvectors.

2 Specification

```c
#include <nag.h>

void nag_zggbal (Nag_OrderType order, Nag_JobType job, Integer n, Complex a[], Integer pda, Complex b[], Integer pdb, Integer *ilo, Integer *ihi, double lscale[], double rscale[], NagError *fail)
```

3 Description

Balancing may reduce the 1-norm of the matrices and improve the accuracy of the computed eigenvalues and eigenvectors in the complex generalized eigenvalue problem

\[Ax = \lambda Bx. \]

nag_zggbal (f08wvc) is usually the first step in the solution of the above generalized eigenvalue problem. Balancing is optional but it is highly recommended.

The term 'balancing' covers two steps, each of which involves similarity transformations on \(A\) and \(B\). The function can perform either or both of these steps. Both steps are optional.

1. The function first attempts to permute \(A\) and \(B\) to block upper triangular form by a similarity transformation:

\[
PAP^T = F = \begin{pmatrix} F_{11} & F_{12} & F_{13} \\ F_{22} & F_{23} \\ F_{33} \end{pmatrix}
\]

\[
PBP^T = G = \begin{pmatrix} G_{11} & G_{12} & G_{13} \\ G_{22} & G_{23} \\ G_{33} \end{pmatrix}
\]

where \(P\) is a permutation matrix, \(F_{11}, F_{33}, G_{11}\) and \(G_{33}\) are upper triangular. Then the diagonal elements of the matrix pairs \((F_{11}, G_{11})\) and \((F_{33}, G_{33})\) are generalized eigenvalues of \((A, B)\). The rest of the generalized eigenvalues are given by the matrix pair \((F_{22}, G_{22})\) which are in rows and columns \(ilo\) to \(ihi\). Subsequent operations to compute the generalized eigenvalues of \((A, B)\) need only be applied to the matrix pair \((F_{22}, G_{22})\); this can save a significant amount of work if \(ilo > 1\) and \(ihi < n\). If no suitable permutation exists (as is often the case), the function sets \(ilo = 1\) and \(ihi = n\).

2. The function applies a diagonal similarity transformation to \((F, G)\), to make the rows and columns of \((F_{22}, G_{22})\) as close in norm as possible:

\[
DFD = \begin{pmatrix} I & 0 & 0 \\ 0 & D_{22} & 0 \\ 0 & 0 & I \end{pmatrix} \begin{pmatrix} F_{11} & F_{12} & F_{13} \\ F_{22} & F_{23} \\ F_{33} \end{pmatrix} \begin{pmatrix} I & 0 & 0 \\ 0 & D_{22} & 0 \\ 0 & 0 & I \end{pmatrix}
\]

\[
DGD^{-1} = \begin{pmatrix} I & 0 & 0 \\ 0 & D_{22} & 0 \\ 0 & 0 & I \end{pmatrix} \begin{pmatrix} G_{11} & G_{12} & G_{13} \\ G_{22} & G_{23} \\ G_{33} \end{pmatrix} \begin{pmatrix} I & 0 & 0 \\ 0 & D_{22} & 0 \\ 0 & 0 & I \end{pmatrix}
\]

This transformation usually improves the accuracy of computed generalized eigenvalues and eigenvectors.
References

Parameters

1: order – Nag_OrderType
 On entry: the order parameter specifies the two-dimensional storage scheme being used, i.e., row-
 major ordering or column-major ordering. C language defined storage is specified by order = Nag_RowMajor. See Section 2.2.1.4 of the Essential Introduction for a more detailed
 explanation of the use of this parameter.
 Constraint: order = Nag_RowMajor or Nag_ColMajor.

2: job – Nag_JobType
 On entry: specifies the operations to be performed on matrices A and B:
 if job = Nag_DoNothing, no balancing is done. Initialize ilo = 1, ihi = n, lscale[i - 1] = 1.0 and rscale[i - 1] = 1.0, for i = 1, ..., n;
 if job = Nag_Permute, only permutations are used in balancing;
 if job = Nag_Scale, only scalings are are used in balancing;
 if job = Nag_DoBoth, both permutations and scalings are used in balancing.
 Constraint: job = Nag_DoNothing, Nag_Permute, Nag_Scale or Nag_DoBoth.

3: n – Integer
 On entry: n, the order of the matrices A and B.
 Constraint: n ≥ 0.

4: a[dim] – Complex
 On entry: the n by n matrix A.
 On exit: a is overwritten by the balanced matrix.
 a is not referenced if job = Nag_DoNothing.

5: pda – Integer
 On entry: the stride separating matrix row or column elements (depending on the value of order) in
 the array a.
 Constraint: pda ≥ max(1, n).

6: b[dim] – Complex
 On entry: the n by n matrix B.
On exit: b is overwritten by the balanced matrix.

b is not referenced if job = Nag_DoNothing.

7: pdb – Integer

On entry: the stride separating matrix row or column elements (depending on the value of order) in the array b.

Constraint: $pdb \geq \max(1, n)$.

8: ilo – Integer *

9: ihi – Integer *

On exit: i_{lo} and i_{hi} are set such that $A(i,j) = 0$ and $B(i,j) = 0$ if $i > j$ and $1 \leq j < i_{lo}$ or $i_{hi} < i \leq n$.

If job = Nag_DoNothing or Nag_Scale, $i_{lo} = 1$ and $i_{hi} = n$.

10: lscale$[dim]$ – double

Note: the dimension, dim, of the array lscale must be at least $\max(1, n)$.

On exit: details of the permutations and scaling factors applied to the left side of the matrices A and B. If P_i is the index of the row interchanged with row i and d_i is the scaling factor applied to row i, then

$$
lscale[i - 1] = P_i, \quad \text{for } i = 1, \ldots, i_{lo} - 1;
$$

$$
lscale[i - 1] = d_i, \quad \text{for } i = i_{lo}, \ldots, i_{hi};
$$

$$
lscale[i - 1] = P_i, \quad \text{for } i = i_{hi} + 1, \ldots, n.
$$

The order in which the interchanges are made is n to $i_{hi} + 1$, then 1 to $i_{lo} - 1$.

11: rscale$[dim]$ – double

Note: the dimension, dim, of the array rscale must be at least $\max(1, n)$.

On exit: details of the permutations and scaling factors applied to the right side of the matrices A and B. If P_j is the index of the column interchanged with column j and d_j is the scaling factor applied to column j, then

$$
rscale[j - 1] = P_j, \quad \text{for } j = 1, \ldots, i_{lo} - 1;
$$

$$
rscale[j - 1] = d_j, \quad \text{for } j = i_{lo}, \ldots, i_{hi};
$$

$$
rscale[j - 1] = P_j, \quad \text{for } j = i_{hi} + 1, \ldots, n.
$$

The order in which the interchanges are made is n to $i_{hi} + 1$, then 1 to $i_{lo} - 1$.

12: fail – NagError *

The NAG error parameter (see the Essential Introduction).

6 Error Indicators and Warnings

NE_INT

On entry, $n = \langle value \rangle$.

Constraint: $n \geq 0$.

On entry, $pda = \langle value \rangle$.

Constraint: $pda > 0$.

On entry, $pdb = \langle value \rangle$.

Constraint: $pdb > 0$.
On entry, \(pda = \langle value \rangle, \ n = \langle value \rangle \).
Constraint: \(pda \geq \max(1, n) \).

On entry, \(pdb = \langle value \rangle, \ n = \langle value \rangle \).
Constraint: \(pdb \geq \max(1, n) \).

Memory allocation failed.

On entry, parameter \(\langle value \rangle \) had an illegal value.

An internal error has occurred in this function. Check the function call and any array sizes. If the call is correct then please consult NAG for assistance.

The errors are negligible, compared to those in subsequent computations.

nag_zggbal (\f08wvc\) is usually the first step in computing the complex generalized eigenvalue problem but it is an optional step. The matrix \(B \) is reduced to the triangular form using the \(QR \) factorization function nag_zgeqrf (\f08asc\) and the unitary transformation \(Q \) is applied to the matrix \(A \) by calling nag_zunmqr (\f08auc\). This is followed by nag_zgghrd (\f08wsc\) which reduces the matrix pair into the generalized Hessenberg form.

If the matrix pair \((A, B) \) is balanced by this function, then any generalized eigenvectors computed subsequently are eigenvectors of the balanced matrix pair. In that case, to compute the generalized eigenvectors of the original matrix, nag_zggbak (\f08wwc\) must be called.

The total number of floating-point operations is approximately proportional to \(n^2 \).

The real analogue of this function is nag_dggbal (\f08whc\).

See Section 9 of the documents for nag_zhgeqz (\f08xsc\) and nag_ztgevc (\f08yxc\).