1 Purpose

nag_zhegst (f08ssc) reduces a complex Hermitian-definite generalized eigenproblem $Az = \lambda Bz$, $ABz = \lambda z$ or $BAz = \lambda z$ to the standard form $Cy = \lambda y$, where A is a complex Hermitian matrix and B has been factorized by nag_zpotrf (f07frc).

2 Specification

```c
void nag_zhegst (Nag_OrderType order, Nag_ComputeType comp_type,
                Nag_UploType uplo, Integer n, Complex a[], Integer pda,
                const Complex b[], Integer pdb, NagError *fail)
```

3 Description

To reduce the complex Hermitian-definite generalized eigenproblem $Az = \lambda Bz$, $ABz = \lambda z$ or $BAz = \lambda z$ to the standard form $Cy = \lambda y$, this function must be preceded by a call to nag_zpotrf (f07frc) which computes the Cholesky factorization of B; B must be positive-definite.

The different problem types are specified by the parameter `comp_type`, as indicated in the table below. The table shows how C is computed by the function, and also how the eigenvectors z of the original problem can be recovered from the eigenvectors of the standard form.

<table>
<thead>
<tr>
<th><code>comp_type</code></th>
<th>Problem</th>
<th><code>uplo</code></th>
<th>B</th>
<th>C</th>
<th>z</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$Az = \lambda Bz$</td>
<td>Nag_Upper</td>
<td>$U^H U$</td>
<td>$U^{-H} AU^{-1}$</td>
<td>$U^{-1} y$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Nag_Lower</td>
<td>$L L^H$</td>
<td>$L^{-1} AL^{-H}$</td>
<td>$L^{-1} y$</td>
</tr>
<tr>
<td>2</td>
<td>$ABz = \lambda z$</td>
<td>Nag_Upper</td>
<td>$U^H U$</td>
<td>$U A U^H$</td>
<td>$U^{-1} y$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Nag_Lower</td>
<td>$L L^H$</td>
<td>$L^H A L$</td>
<td>$L^{-1} y$</td>
</tr>
<tr>
<td>3</td>
<td>$BAz = \lambda z$</td>
<td>Nag_Upper</td>
<td>$U^H U$</td>
<td>$U A U^H$</td>
<td>$U^H y$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Nag_Lower</td>
<td>$L L^H$</td>
<td>$L^H A L$</td>
<td>$L y$</td>
</tr>
</tbody>
</table>

4 References

5 Parameters

1: `order` – Nag_OrderType

Input

On entry: the `order` parameter specifies the two-dimensional storage scheme being used, i.e., row-major ordering or column-major ordering. C language defined storage is specified by `order = Nag_RowMajor`. See Section 2.2.1.4 of the Essential Introduction for a more detailed explanation of the use of this parameter.

Constraint: `order = Nag_RowMajor` or `Nag_ColMajor`.

2: `comp_type` – Nag_ComputeType

Input

On entry: indicates how the standard form is computed as follows:
if \(\text{comp	extunderscore type} = \text{Nag	extunderscore Compute	extunderscore 1} \),
if \(\text{uplo} = \text{Nag	extunderscore Upper} \), \(C = U^{-H}AU^{-1} \);
if \(\text{uplo} = \text{Nag	extunderscore Lower} \), \(C = L^{-1}AL^{-H} \);
if \(\text{comp	extunderscore type} = \text{Nag	extunderscore Compute	extunderscore 2} \) or \(\text{Nag	extunderscore Compute	extunderscore 3} \),
if \(\text{uplo} = \text{Nag	extunderscore Upper} \), \(C = UAU^H \);
if \(\text{uplo} = \text{Nag	extunderscore Lower} \), \(C = L^HAL \).

Constraint: \(\text{comp	extunderscore type} = \text{Nag	extunderscore Compute	extunderscore 1} \), \(\text{Nag	extunderscore Compute	extunderscore 2} \) or \(\text{Nag	extunderscore Compute	extunderscore 3} \).

3: \(\text{uplo} \) – Nag	extunderscore UploType

\(\text{Input} \)

On entry: indicates whether the upper or lower triangular part of \(A \) is stored and how \(B \) has been factorized, as follows:
if \(\text{uplo} = \text{Nag	extunderscore Upper} \), the upper triangular part of \(A \) is stored and \(B = U^H \); if \(\text{uplo} = \text{Nag	extunderscore Lower} \), the lower triangular part of \(A \) is stored and \(B = L \).

Constraint: \(\text{uplo} = \text{Nag	extunderscore Upper} \) or \(\text{Nag	extunderscore Lower} \).

4: \(n \) – Integer

\(\text{Input} \)

On entry: \(n \), the order of the matrices \(A \) and \(B \).

Constraint: \(n \geq 0 \).

5: \(a[dim] \) – Complex

\(\text{Input/Output} \)

Note: the dimension, \(dim \), of the array \(a \) must be at least \(\max(1, pda \times n) \).

If \(\text{order} = \text{Nag	extunderscore ColMajor} \), the \((i,j) \)th element of the matrix \(A \) is stored in \(a[(j-1) \times pda + i - 1] \) and if \(\text{order} = \text{Nag	extunderscore RowMajor} \), the \((i,j) \)th element of the matrix \(A \) is stored in \(a[(i-1) \times pda + j - 1] \).

On entry: the \(n \) by \(n \) Hermitian matrix \(A \). If \(\text{uplo} = \text{Nag	extunderscore Upper} \), the upper triangle of \(A \) must be stored and the elements of the array below the diagonal are not referenced; if \(\text{uplo} = \text{Nag	extunderscore Lower} \), the lower triangle of \(A \) must be stored and the elements of the array above the diagonal are not referenced.

On exit: the upper or lower triangle of \(A \) is overwritten by the corresponding upper or lower triangle of \(C \) as specified by \(\text{comp	extunderscore type} \) and \(\text{uplo} \).

6: \(pda \) – Integer

\(\text{Input} \)

On entry: the stride separating row or column elements (depending on the value of \(\text{order} \)) of the matrix \(A \) in the array \(a \).

Constraint: \(pda \geq \max(1, n) \).

7: \(b[dim] \) – Complex

\(\text{Input/Output} \)

Note: the dimension, \(dim \), of the array \(b \) must be at least \(\max(1, pdb \times n) \).

If \(\text{order} = \text{Nag	extunderscore ColMajor} \), the \((i,j) \)th element of the matrix \(B \) is stored in \(b[(j-1) \times pdb + i - 1] \) and if \(\text{order} = \text{Nag	extunderscore RowMajor} \), the \((i,j) \)th element of the matrix \(B \) is stored in \(b[(i-1) \times pdb + j - 1] \).

On entry: the Cholesky factor of \(B \) as specified by \(\text{uplo} \) and returned by \text{nag	extunderscore zpotrf} (f07frc).

On exit: used as internal workspace prior to being restored and hence is unchanged.

8: \(pdb \) – Integer

\(\text{Input} \)

On entry: the stride separating row or column elements (depending on the value of \(\text{order} \)) of the matrix \(B \) in the array \(b \).

Constraint: \(pdb \geq \max(1, n) \).
6 Error Indicators and Warnings

NE_INT
On entry, \(n = \langle \text{value} \rangle \).
Constraint: \(n \geq 0 \).

On entry, \(pda = \langle \text{value} \rangle \).
Constraint: \(pda > 0 \).

On entry, \(pdb = \langle \text{value} \rangle \).
Constraint: \(pdb > 0 \).

NE_INT_2
On entry, \(pda = \langle \text{value} \rangle \), \(n = \langle \text{value} \rangle \).
Constraint: \(pda \geq \max(1, n) \).

On entry, \(pdb = \langle \text{value} \rangle \), \(n = \langle \text{value} \rangle \).
Constraint: \(pdb \geq \max(1, n) \).

NE_ALLOC_FAIL
Memory allocation failed.

NE_BAD_PARAM
On entry, parameter \(\langle \text{value} \rangle \) had an illegal value.

NE_INTERNAL_ERROR
An internal error has occurred in this function. Check the function call and any array sizes. If the call is correct then please consult NAG for assistance.

7 Accuracy

Forming the reduced matrix \(C \) is a stable procedure. However it involves implicit multiplication by \(B^{-1} \) if \(\text{comp_type} = \text{Nag_Compute}_1 \) or \(B \) (if \(\text{comp_type} = \text{Nag_Compute}_2 \) or \(\text{Nag_Compute}_3 \)). When the function is used as a step in the computation of eigenvalues and eigenvectors of the original problem, there may be a significant loss of accuracy if \(B \) is ill-conditioned with respect to inversion.

8 Further Comments

The total number of real floating-point operations is approximately \(4n^3 \).

The real analogue of this function is nag_dsygst (f08sec).

9 Example

To compute all the eigenvalues of \(Az = \lambda Bz \), where

\[
A = \begin{bmatrix}
-7.36 + 0.00i & 0.77 - 0.43i & -0.64 - 0.92i & 3.01 - 6.97i \\
0.77 + 0.43i & 3.49 + 0.00i & 2.19 + 4.45i & 1.90 + 3.73i \\
-0.64 + 0.92i & 2.19 - 4.45i & 0.12 + 0.00i & 2.88 - 3.17i \\
3.01 + 6.97i & 1.90 - 3.73i & 2.88 + 3.17i & -2.54 + 0.00i
\end{bmatrix}
\]

and
Here B is Hermitian positive-definite and must first be factorized by nag_zpotrf (f07frc). The program calls nag_zhegst (f08ssc) to reduce the problem to the standard form $Cy = \lambda y$; then nag_zhetrd (f08fsc) to reduce C to tridiagonal form, and nag_dsterf (f08jfc) to compute the eigenvalues.

9.1 Program Text

/* nag_zhegst (f08ssc) Example Program. */
* Copyright 2001 Numerical Algorithms Group.
* * Mark 7, 2001.
*/
#include <stdio.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagf07.h>
#include <nagf08.h>

int main(void)
{
 /* Scalars */
 Integer i, j, n, pda, pdb, d_len, e_len, tau_len;
 Integer exit_status=0;
 NagError fail;
 Nag_UploType uplo;
 Nag_OrderType order;
 /* Arrays */
 char uplo_char[2];
 double *d=0, *e=0;
 Complex *a=0, *b=0, *tau=0;

 INIT_FAIL(fail);
 Vprintf("f08ssc Example Program Results\n\n");

 /* Skip heading in data file */
 Vscanf("%*[\n]");
 Vscanf("%ld%*[\n] ", &n);
 #ifdef NAG_COLUMN_MAJOR
 pda = n;
 pdb = n;
 #else
 pda = n;
 pdb = n;
 #endif

 d_len = n;
 e_len = n-1;
 tau_len = n-1;

 /* Allocate memory */
 if (!(a = NAG_ALLOC(n * n, Complex)) ||
 !(b = NAG_ALLOC(n * n, Complex)) ||
 !(d = NAG_ALLOC(n, double)) ||
 ...)
 goto fail;

 /* Perform the reduction */
 if (nag_zhegst(f08ssc, &n, a, pda, uplo_char, &n, &uplo, &nagf07nme, NULL, &fail)"

 /* Compute the eigenvalues */
 if (nag_dsterf(f08jfc, &n, a, pda, &nagf07nme, &fail))
 goto fail;

 /* Print the results */
 Vprintf("Eigenvalues of the matrix:
 ");
 for (i=0; i<n; i++)
 printf("%16.10f%16.10f\n", a[i*n+i] + d[i*n+i].re,
 a[i*n+i] + d[i*n+i].im);

 return exit_status;

fail:
 abort();
}
!(d = NAG_ALLOC(d_len, double)) ||
!(e = NAG_ALLOC(e_len, double)) ||
!(tau = NAG_ALLOC(tau_len, Complex))
{
Vprintf("Allocation failure\n");
exit_status = -1;
goto END;
}

/* Read A and B from data file */
Vscanf(" %ls %*[\n] ", uplo_char);
if (*((unsigned char *)uplo_char == 'L')
 uplo = Nag_Lower;
else if (*((unsigned char *)uplo_char == 'U')
 uplo = Nag_Upper;
else
{
 Vprintf("Unrecognised character for Nag_UploType type\n");
 exit_status = -1;
goto END;
}

if (uplo == Nag_Upper)
{
 for (i = 1; i <= n; ++i)
 {
 for (j = 1; j <= i; ++j)
 Vscanf(" (%lf , %lf)", &A(i,j).re, &A(i,j).im);
 }
 Vscanf("%*[\n] ");
 for (i = 1; i <= n; ++i)
 {
 for (j = i; j <= n; ++j)
 Vscanf(" (%lf , %lf)", &B(i,j).re, &B(i,j).im);
 }
 Vscanf("%*[\n] ");
}
else
{
 for (i = 1; i <= n; ++i)
 {
 for (j = 1; j <= i; ++j)
 Vscanf(" (%lf , %lf)", &A(i,j).re, &A(i,j).im);
 }
 Vscanf("%*[\n] ");
 for (i = 1; i <= n; ++i)
 {
 for (j = 1; j <= i; ++j)
 Vscanf(" (%lf , %lf)", &B(i,j).re, &B(i,j).im);
 }
 Vscanf("%*[\n] ");
}

/* Compute the Cholesky factorization of B */
f07frc(order, uplo, n, b, pdb, &fail);
if (fail.code != NE_NOERROR)
{
 Vprintf("Error from f07frc.
%s
", fail.message);
 exit_status = 1;
goto END;
}

/* Reduce the problem to standard form C*y = lambda*y, storing */
/* the result in A */
f08ssc(order, Nag_Compute_1, uplo, n, a, pda, b, pdb, &fail);
if (fail.code != NE_NOERROR)
{
 Vprintf("Error from f08ssc.
%s
", fail.message);
 exit_status = 1;
goto END;
}

/* Reduce C to tridiagonal form T = (Q**T)*C*Q */
f08fsc(order, uplo, n, a, pda, d, e, tau, &fail);
if (fail.code != NE_NOERROR)
{
 Vprintf("Error from f08fsc.\n\n", fail.message);
 exit_status = 1;
 goto END;
} /* Calculate the eigenvalues of T (same as C) */
f08jfc(n, d, e, &fail);
if (fail.code != NE_NOERROR)
{
 Vprintf("Error from f08jfc.\n\n", fail.message);
 exit_status = 1;
 goto END;
} /* Print eigenvalues */
Vprintf("Eigenvalues\n");
for (i = 1; i <= n; ++i)
 Vprintf("%8.4f%s", d[i-1], i%9==0 ?"\n":" ");
Vprintf("\n");
END:
if (a) NAG_FREE(a);
if (b) NAG_FREE(b);
if (d) NAG_FREE(d);
if (e) NAG_FREE(e);
if (tau) NAG_FREE(tau);
return exit_status;
}

9.2 Program Data
f08ssc Example Program Data
4 :Value of N
'\text{L}' :Value of UPLO
(-7.36, 0.00)
(0.77, 0.43) (3.49, 0.00)
(-0.64, 0.92) (2.19,-4.45) (3.49, 0.00)
(3.01, 6.97) (1.90,-3.73) (3.17) (-2.54, 0.00) :End of matrix A
(3.23, 0.00)
(1.51, 1.92) (3.58, 0.00)
(1.90,-0.84) (-0.23,-1.11) (4.09, 0.00)
(0.42,-2.50) (-1.18,-1.37) (2.33, 0.14) (4.29, 0.00) :End of matrix B

9.3 Program Results
f08ssc Example Program Results
Eigenvalues
-5.9990 -2.9936 0.5047 3.9990