NAG C Library Function Document
nag_zhseqr (f08psc)

1 Purpose

nag_zhseqr (f08psc) computes all the eigenvalues, and optionally the Schur factorization, of a complex Hessenberg matrix or a complex general matrix which has been reduced to Hessenberg form.

2 Specification

void nag_zhseqr (Nag_OrderType order, Nag_JobType job, Nag_ComputeZType compz,
 Integer n, Integer ilo, Integer ihi, Complex h[], Integer pdh, Complex w[],
 Complex z[], Integer pdz, NagError *fail)

3 Description

nag_zhseqr (f08psc) computes all the eigenvalues, and optionally the Schur factorization, of a complex upper Hessenberg matrix H:

$$H = ZT Z^H,$$

where T is an upper triangular matrix (the Schur form of H), and Z is the unitary matrix whose columns are the Schur vectors z_i. The diagonal elements of T are the eigenvalues of H.

The function may also be used to compute the Schur factorization of a complex general matrix A which has been reduced to upper Hessenberg form H:

$$A = Q H Q^H,$$

where Q is unitary,

$$= (Q Z) T (Q Z)^H.$$

In this case, after nag_zgehrd (f08nsc) has been called to reduce A to Hessenberg form, nag_zunghr (f08ntc) must be called to form Q explicitly; Q is then passed to nag_zhseqr (f08psc), which must be called with compz = Nag_UpdateZ.

The function can also take advantage of a previous call to nag_zgebal (f08nvc) which may have balanced the original matrix before reducing it to Hessenberg form, so that the Hessenberg matrix H has the structure:

$$
\begin{pmatrix}
H_{11} & H_{12} & H_{13} \\
H_{22} & H_{23} \\
H_{33}
\end{pmatrix}
$$

where H_{11} and H_{33} are upper triangular. If so, only the central diagonal block H_{22} (in rows and columns i_{lo} to i_{hi}) needs to be further reduced to Schur form (the blocks H_{12} and H_{23} are also affected). Therefore the values of i_{lo} and i_{hi} can be supplied to nag_zhseqr (f08psc) directly. Also, nag_zgebak (f08nwc) must be called after this function to permute the Schur vectors of the balanced matrix to those of the original matrix. If nag_zgebal (f08nvc) has not been called however, then i_{lo} must be set to 1 and i_{hi} to n. Note that if the Schur factorization of A is required, nag_zgebal (f08nvc) must not be called with job = Nag_Schur or Nag_DoBoth, because the balancing transformation is not unitary.

nag_zhseqr (f08psc) uses a multishift form of the upper Hessenberg QR algorithm, due to Bai and Demmel (1989). The Schur vectors are normalized so that $\|z_i\|_2 = 1$, but are determined only to within a complex factor of absolute value 1.

4 References

Bai Z and Demmel J W (1989) On a block implementation of Hessenberg multishift QR iteration Internat.
J. High Speed Speed. Comput. 1 97–112
5 Parameters

1: \textbf{order} – Nag_OrderType \hspace{1cm} \textit{Input}

\textit{On entry:} the \texttt{order} parameter specifies the two-dimensional storage scheme being used, i.e., row-major ordering or column-major ordering. C language defined storage is specified by \texttt{order = Nag_RowMajor}. See Section 2.2.1.4 of the Essential Introduction for a more detailed explanation of the use of this parameter.

\textit{Constraint:} \texttt{order = Nag_RowMajor} or \texttt{Nag_ColMajor}.

2: \textbf{job} – Nag_JobType \hspace{1cm} \textit{Input}

\textit{On entry:} indicates whether eigenvalues only or the Schur form \(T \) is required, as follows:

- if \texttt{job = Nag_EigVals}, eigenvalues only are required;
- if \texttt{job = Nag_Schur}, the Schur form \(T \) is required.

\textit{Constraint:} \texttt{job = Nag_EigVals} or \texttt{Nag_Schur}.

3: \textbf{compz} – Nag_ComputeZType \hspace{1cm} \textit{Input}

\textit{On entry:} indicates whether the Schur vectors are to be computed as follows:

- if \texttt{compz = Nag_NotZ}, no Schur vectors are computed (and the array \(z \) is not referenced);
- if \texttt{compz = Nag_InitZ}, the Schur vectors of \(H \) are computed (and the array \(z \) is initialised by the routine);
- if \texttt{compz = Nag_UpdateZ}, the Schur vectors of \(A \) are computed (and the array \(z \) must contain the matrix \(Q \) on entry).

\textit{Constraint:} \texttt{compz = Nag_NotZ}, \texttt{Nag_InitZ} or \texttt{Nag_UpdateZ}.

4: \textbf{n} – Integer \hspace{1cm} \textit{Input}

\textit{On entry:} \(n \), the order of the matrix \(H \).

\textit{Constraint:} \(n \geq 0 \).

5: \textbf{ilo} – Integer \hspace{1cm} \textit{Input}

6: \textbf{ihi} – Integer \hspace{1cm} \textit{Input}

\textit{On entry:} if the matrix \(A \) has been balanced by \texttt{nag_zgebal} (f08nvc), then \texttt{ilo} and \texttt{ihi} must contain the values returned by that function. Otherwise, \texttt{ilo} must be set to 1 and \texttt{ihi} to \(n \).

\textit{Constraint:} \(\texttt{ilo} \geq 1 \) and \(\min(\texttt{ilo}, \texttt{n}) \leq \texttt{ihi} \leq \texttt{n} \).

7: \textbf{h} one \textit{Input/Output}

\textbf{Note:} the dimension, \textit{dim}, of the array \textbf{h} must be at least \(\max(1, \texttt{pdh} \times \texttt{n}) \).

If \texttt{order = Nag_ColMajor}, the \((i, j)\)th element of the matrix \(H \) is stored in \texttt{h[(j-1) \times pdh + i - 1]} and if \texttt{order = Nag_RowMajor}, the \((i, j)\)th element of the matrix \(H \) is stored in \texttt{h[(i-1) \times pdh + j - 1]}.

\textit{On entry:} the \(n \) by \(n \) upper Hessenberg matrix \(H \), as returned by \texttt{nag_zgehrd} (f08nsc).

\textit{On exit:} if \texttt{job = Nag_EigVals}, the array contains no useful information. If \texttt{job = Nag_Schur}, \(H \) is overwritten by the upper triangular matrix \(T \) from the Schur decomposition (the Schur form) unless \(\texttt{fail} > 0 \).
8: pdh – Integer
 On entry: the stride separating matrix row or column elements (depending on the value of order) in the array h.
 Constraint: pdh ≥ max(1, n).

9: w[dim] – Complex
 Note: the dimension, dim, of the array w must be at least max(1, n).
 On exit: the computed eigenvalues, unless fail > 0 (in which case see Section 6). The eigenvalues are stored in the same order as on the diagonal of the Schur form T (if computed).

10: z[dim] – Complex
 Note: the dimension, dim, of the array z must be at least max(1, pdz / n) when compz = Nag_UpdateZ or Nag_InitZ;
 1 when compz = Nag_NotZ.
 If order = Nag_ColMajor, the (i, j)th element of the matrix Z is stored in z[(j - 1) × pdz + i - 1] and if order = Nag_RowMajor, the (i, j)th element of the matrix Z is stored in z[(i - 1) × pdz + j - 1].
 On entry: if compz = Nag_UpdateZ, z must contain the unitary matrix Q from the reduction to Hessenberg form; if compz = Nag_InitZ, z need not be set.
 On exit: if compz = Nag_UpdateZ or Nag_InitZ, z contains the unitary matrix of the required Schur vectors, unless fail > 0.
 z is not referenced if compz = Nag_NotZ.

11: pdz – Integer
 On entry: the stride separating matrix row or column elements (depending on the value of order) in the array z.
 Constraints:
 if compz = Nag_UpdateZ or Nag_InitZ, pdz ≥ max(1, n);
 if compz = Nag_NotZ, pdz ≥ 1.

12: fail – NagError *
 The NAG error parameter (see the Essential Introduction).

6 Error Indicators and Warnings

NE_INT
 On entry, n = ⟨value⟩.
 Constraint: n ≥ 0.
 On entry, pdh = ⟨value⟩.
 Constraint: pdh > 0.
 On entry, pdz = ⟨value⟩.
 Constraint: pdz > 0.

NE_INT_2
 On entry, pdh = ⟨value⟩, n = ⟨value⟩.
 Constraint: pdh ≥ max(1, n).

NE_INT_3
 On entry, n = ⟨value⟩, ilo = ⟨value⟩, ihi = ⟨value⟩.
 Constraint: ilo ≥ 1 and min(ilo, n) ≤ ihi ≤ n.
NE_ENUM_INT_2
On entry, \(\text{compz} = \langle \text{value} \rangle \), \(n = \langle \text{value} \rangle \), \(pdz = \langle \text{value} \rangle \).
Constraint: if \(\text{compz} = \text{Nag_UpdateZ} \) or \(\text{Nag_InitZ} \), \(pdz \geq \max(1, n) \);
if \(\text{compz} = \text{Nag_NotZ} \), \(pdz \geq 1 \).

NE_CONVERGENCE
The algorithm has failed to find all the eigenvalues after a total of \(30(ihi - ilo + 1) \) iterations.

NE_ALLOC_FAIL
Memory allocation failed.

NE_BAD_PARAM
On entry, parameter \(\langle \text{value} \rangle \) had an illegal value.

NE_INTERNAL_ERROR
An internal error has occurred in this function. Check the function call and any array sizes. If the call is correct then please consult NAG for assistance.

7 Accuracy
The computed Schur factorization is the exact factorization of a nearby matrix \(H + E \), where
\[
\|E\|_2 = O(\varepsilon)\|H\|_2,
\]
and \(\varepsilon \) is the \text{machine precision}.

If \(\lambda_i \) is an exact eigenvalue, and \(\tilde{\lambda}_i \) is the corresponding computed value, then
\[
|\tilde{\lambda}_i - \lambda_i| \leq c(n)\varepsilon\|H\|_2/s_i,
\]
where \(c(n) \) is a modestly increasing function of \(n \), and \(s_i \) is the reciprocal condition number of \(\lambda_i \). The condition numbers \(s_i \) may be computed by calling nag_ztrsna (f08qyc).

8 Further Comments
The total number of real floating-point operations depends on how rapidly the algorithm converges, but is typically about:

- \(25n^3 \) if only eigenvalues are computed;
- \(35n^3 \) if the Schur form is computed;
- \(70n^3 \) if the full Schur factorization is computed.

The real analogue of this function is nag_dhseqr (f08pec).

9 Example
To compute all the eigenvalues and the Schur factorization of the upper Hessenberg matrix \(H \), where
\[
H = \begin{pmatrix}
-3.9700 - 5.0400i & -1.1318 - 2.5693i & -4.6027 - 0.1426i & -1.4249 + 1.7330i \\
-5.4797 + 0.0000i & 1.8585 - 1.5502i & 4.4145 - 0.7638i & -0.4805 - 1.1976i \\
0.0000 + 0.0000i & 6.2673 + 0.0000i & -0.4504 - 0.0290i & -1.3467 + 1.6579i \\
0.0000 + 0.0000i & 0.0000 + 0.0000i & -3.5000 + 0.0000i & 2.5619 - 3.3708i
\end{pmatrix},
\]
See also nag_zunghr (f08ntc), which illustrates the use of this function to compute the Schur factorization of a general matrix.
9.1 Program Text

/* nag_zhseqr (f08psc) Example Program.
 * Copyright 2001 Numerical Algorithms Group.
 */

#include <stdio.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagf08.h>
#include <nagx04.h>

int main(void)
{
 /* Scalars */
 Integer i, j, n, pdh, pdz, w_len;
 Integer exit_status=0;
 NagError fail;
 Nag_OrderType order;
 /* Arrays */
 Complex *h=0, *w=0, *z=0;

 #ifdef NAG_COLUMN_MAJOR
 #define H(I,J) h[(J-1)*pdh+I-1]
 order = Nag_ColMajor;
 #else
 #define H(I,J) h[(I-1)*pdh+J-1]
 order = Nag_RowMajor;
 #endif

 INIT_FAIL(fail);
 Vprintf("f08psc Example Program Results\n\n");
 /* Skip heading in data file */
 Vscanf("%*[\n"]
 Vscanf("%ld%*[\n"] , &n);

 #ifdef NAG_COLUMN_MAJOR
 pdh = n;
 pdz = n;
 #else
 pdh = n;
 pdz = n;
 #endif

 w_len = n;

 /* Allocate memory */
 if (!(h = NAG_ALLOC(n * n, Complex)) ||
 !(w = NAG_ALLOC(w_len, Complex)) ||
 !(z = NAG_ALLOC(n* n, Complex)))
 {
 Vprintf("Allocation failure\n");
 exit_status = -1;
 goto END;
 }

 /* Read H from data file */
 for (i = 1; i <= n; ++i)
 {
 for (j = 1; j <= n; ++j)
 {
 Vscanf(" (%lf , %lf)", &H(i,j).re, &H(i,j).im);
 }
 }

 /* Calculate the eigenvalues and Schur factorization of H */
 f08psc(order, Nag_Schur, Nag_InitZ, n, 1, n, h, pdh, w, z, pdz, &fail);
 if (fail.code != NE_NOERROR)
 {

[NP3645/7]
Vprintf("Error from f08psc.\n\n", fail.message);
exit_status = 1;
goto END;
}
Vprintf(" Eigenvalues\n");
for (i = 1; i <= n; ++i)
 Vprintf("(%7.4f,%7.4f) ", w[i-1].re, w[i-1].im);
Vprintf("\n\n");
/* Print Schur form */
x04dbc(order, Nag_GeneralMatrix, Nag_NonUnitDiag, n, n,
h, pdh, Nag_BracketForm, "%7.4f", "Schur form",
Nag_IntegerLabels, 0, Nag_IntegerLabels, 0, 80,
0, 0, &fail);
if (fail.code != NE_NOERROR)
{
 Vprintf("Error from x04dbc.\n\n", fail.message);
 exit_status = 1;
goto END;
}
/* Print Schur vectors */
Vprintf("\n");
x04dbc(order, Nag_GeneralMatrix, Nag_NonUnitDiag, n, n,
z, pdz, Nag_BracketForm, "%7.4f",
"Schur vectors of H", Nag_IntegerLabels, 0,
Nag_IntegerLabels, 0, 80, 0, 0, &fail);
if (fail.code != NE_NOERROR)
{
 Vprintf("Error from x04dbc.\n\n", fail.message);
 exit_status = 1;
goto END;
}
END:
if (h) NAG_FREE(h);
if (w) NAG_FREE(w);
if (z) NAG_FREE(z);
return exit_status;

9.2 Program Data
f08psc Example Program Data

<table>
<thead>
<tr>
<th>Value of N</th>
</tr>
</thead>
<tbody>
<tr>
<td>(-3.9700, -5.0400)</td>
</tr>
<tr>
<td>(-1.1318, -2.5693)</td>
</tr>
<tr>
<td>(-4.6027, -0.1426)</td>
</tr>
<tr>
<td>(-1.4249, 1.7330)</td>
</tr>
<tr>
<td>(-5.4797, 0.0000)</td>
</tr>
<tr>
<td>(1.8585, -1.5502)</td>
</tr>
<tr>
<td>(4.4145, -0.7638)</td>
</tr>
<tr>
<td>(-0.4805, -1.1976)</td>
</tr>
<tr>
<td>(0.0000, 0.0000)</td>
</tr>
<tr>
<td>(6.2673, 0.0000)</td>
</tr>
<tr>
<td>(-0.4504, -0.0290)</td>
</tr>
<tr>
<td>(0.0000, 0.0000)</td>
</tr>
<tr>
<td>(0.0000, 0.0000)</td>
</tr>
<tr>
<td>(-3.5000, 0.0000)</td>
</tr>
<tr>
<td>(2.5619, -3.3708)</td>
</tr>
</tbody>
</table>

:End of matrix H

9.3 Program Results
f08psc Example Program Results

Eigenvalues
(-6.0004, -6.9998) (-5.0000, 2.0060) (7.9982, -0.9964) (3.0023, -3.9998)

Schur form
1 1 2 3 4
(-6.0004, -6.9998) (-0.2080, 0.4719) (-0.4829, -0.1768) (0.1301, 0.9052)
(0.0000, 0.0000) (-5.0000, 2.0060) (-0.6653, 0.2814) (0.0038, 0.2639)
(0.0000, 0.0000) (0.0000, 0.0000) (7.9982, -0.9964) (0.2004, 1.0595)
(0.0000, 0.0000) (0.0000, 0.0000) (0.0000, 0.0000) (3.0023, -3.9998)

Schur vectors of H
1 1 2 3 4
(0.8457, 0.0000) (0.1380, 0.3602) (-0.2677, -0.1091) (-0.2213, -0.0582)
(0.2824, -0.3304) (-0.4612, 0.2075) (0.6846, 0.0000) (0.2927, 0.0320)
(0.0748, 0.2800) (0.7239, 0.0000) (0.5924, -0.0189) (0.0229, 0.2005)
(0.0670, 0.0860) (0.2169, 0.1560) (-0.2745, 0.1454) (0.9057, 0.0000)