1 Purpose

nag_dhseqr (f08pec) computes all the eigenvalues, and optionally the Schur factorization, of a real Hessenberg matrix or a real general matrix which has been reduced to Hessenberg form.

2 Specification

```c
void nag_dhseqr (Nag_OrderType order, Nag_JobType job, Nag_ComputeZType compz,
                Integer n, Integer ilo, Integer ihi, double h[], Integer pdh,
                double wr[], double wi[], double z[], Integer pdz, NagError *fail)
```

3 Description

nag_dhseqr (f08pec) computes all the eigenvalues, and optionally the Schur factorization, of a real upper Hessenberg matrix H:

$$H = Z T Z^T,$$

where T is an upper quasi-triangular matrix (the Schur form of H), and Z is the orthogonal matrix whose columns are the Schur vectors z_i. See Section 8 for details of the structure of T.

The function may also be used to compute the Schur factorization of a real general matrix A which has been reduced to upper Hessenberg form H:

$$A = Q H Q^T,$$

where Q is orthogonal, $= (Q Z) (Q Z)^T$. In this case, after nag_dgehrd (f08nec) has been called to reduce A to Hessenberg form, nag_dorgrh (f08nfc) must be called to form Q explicitly; Q is then passed to nag_dhseqr (f08pec), which must be called with compz = Nag_UpdateZ.

The function can also take advantage of a previous call to nag_dgebal (f08nhc) which may have balanced the original matrix before reducing it to Hessenberg form, so that the Hessenberg matrix H has the structure:

$$
\begin{pmatrix}
H_{11} & H_{12} & H_{13} \\
H_{22} & H_{23} \\
H_{33}
\end{pmatrix}
$$

where H_{11} and H_{33} are upper triangular. If so, only the central diagonal block H_{22} (in rows and columns $i _ilo$ to $i _ihi$) needs to be further reduced to Schur form (the blocks H_{12} and H_{23} are also affected). Therefore the values of $i _ilo$ and $i _ihi$ can be supplied to nag_dhseqr (f08pec) directly. Also, nag_dgebak (f08njc) must be called after this function to permute the Schur vectors of the balanced matrix to those of the original matrix. If nag_dgebal (f08nhc) has not been called however, then $i _ilo$ must be set to 1 and $i _ihi$ to n. Note that if the Schur factorization of A is required, nag_dgebal (f08nhc) must not be called with job = Nag_Schur or Nag_DoBoth, because the balancing transformation is not orthogonal.

nag_dhseqr (f08pec) uses a multishift form of the upper Hessenberg QR algorithm, due to Bai and Demmel (1989). The Schur vectors are normalized so that $\|z_i\|_2 = 1$, but are determined only to within a factor ± 1.

4 References

5 Parameters

1: order – Nag_OrderType

Input

On entry: the `order` parameter specifies the two-dimensional storage scheme being used, i.e., row-major ordering or column-major ordering. C language defined storage is specified by `order = Nag_RowMajor`. See Section 2.2.1.4 of the Essential Introduction for a more detailed explanation of the use of this parameter.

Constraint: `order` = `Nag_RowMajor` or `Nag_ColMajor`.

2: job – Nag_CompType

Input

On entry: indicates whether eigenvalues only or the Schur form \(T \) is required, as follows:

- if `job` = `Nag_EigVals`, eigenvalues only are required;
- if `job` = `Nag_Schur`, the Schur form \(T \) is required.

Constraint: `job` = `Nag_EigVals` or `Nag_Schur`.

3: compz – Nag_CompType

Input

On entry: indicates whether the Schur vectors are to be computed as follows:

- if `compz` = `Nag_NotZ`, no Schur vectors are computed (and the array \(z \) is not referenced);
- if `compz` = `Nag_InitZ`, the Schur vectors of \(H \) are computed (and the array \(z \) is initialised by the routine);
- if `compz` = `Nag_UpdateZ`, the Schur vectors of \(A \) are computed (and the array \(z \) must contain the matrix \(Q \) on entry).

Constraint: `compz` = `Nag_NotZ`, `Nag_InitZ` or `Nag_UpdateZ`.

4: n – Integer

Input

On entry: \(n \), the order of the matrix \(H \).

Constraint: \(n \geq 0 \).

5: ilo – Integer

Input

On entry: if the matrix \(A \) has been balanced by nag_dgebal (f08nhc), then \(ilo \) and \(ihi \) must contain the values returned by that function. Otherwise, \(ilo \) must be set to 1 and \(ihi \) to \(n \).

Constraint: \(ilo \geq 1 \) and \(\min(ilo,n) \leq ihi \leq n \).

6: ihi – Integer

Input

On entry: if the matrix \(A \) has been balanced by nag_dgebal (f08nhc), then \(ilo \) and \(ihi \) must contain the values returned by that function. Otherwise, \(ilo \) must be set to 1 and \(ihi \) to \(n \).

Constraint: \(ilo \geq 1 \) and \(\min(ilo,n) \leq ihi \leq n \).

7: h[dim] – double

Input/Output

Note: the dimension, \(dim \), of the array \(h \) must be at least \(\max(1, pdh \times n) \).

If `order` = `Nag_ColMajor`, the \((i,j)\)th element of the matrix \(H \) is stored in \(h[(j-1) \times pdh + i - 1] \) and if `order` = `Nag_RowMajor`, the \((i,j)\)th element of the matrix \(H \) is stored in \(h[(i-1) \times pdh + j - 1] \).

On entry: the \(n \) by \(n \) upper Hessenberg matrix \(H \), as returned by nag_dgehrd (f08nec).

On exit: if `job` = `Nag_EigVals`, then the array contains no useful information. If `job` = `Nag_Schur`, then \(H \) is overwritten by the upper quasi-triangular matrix \(T \) from the Schur decomposition (the Schur form) unless `fail` > 0.
8: \(\text{pdh} \) – Integer

\textit{Input}

On entry: the stride separating matrix row or column elements (depending on the value of \textit{order}) in the array \(\mathbf{h} \).

\textit{Constraint}: \(\text{pdh} \geq \text{max}(1, n) \).

9: \(\text{wr}[\text{dim}] \) – double

\textit{Output}

10: \(\text{wi}[\text{dim}] \) – double

\textit{Output}

\textbf{Note}: the dimensions, \textit{dim}, of the arrays \(\text{wr} \) and \(\text{wi} \) must each be at least \(\text{max}(1, n) \).

On exit: the real and imaginary parts, respectively, of the computed eigenvalues, unless \(\text{fail} > 0 \) (in which case see Section 6). Complex conjugate pairs of eigenvalues appear consecutively with the eigenvalue having positive imaginary part first. The eigenvalues are stored in the same order as on the diagonal of the Schur form \(\mathbf{T} \) (if computed); see Section 8 for details.

11: \(\text{z}[\text{dim}] \) – double

\textit{Input/Output}

\textbf{Note}: the dimension, \textit{dim}, of the array \(\text{z} \) must be at least \(\text{max}(1, \text{pdz} \times n) \) when \(\text{compz} = \text{Nag_UpdateZ} \) or \(\text{Nag_InitZ} \);

1 when \(\text{compz} = \text{Nag_NotZ} \).

If \(\text{order} = \text{Nag_ColMajor} \), the \((i,j)\)th element of the matrix \(\mathbf{Z} \) is stored in \(\text{z}[(j - 1) \times \text{pdz} + i - 1] \) and if \(\text{order} = \text{Nag_RowMajor} \), the \((i,j)\)th element of the matrix \(\mathbf{Z} \) is stored in \(\text{z}[(i - 1) \times \text{pdz} + j - 1] \).

On entry: if \(\text{compz} = \text{Nag_UpdateZ} \), \(\text{z} \) must contain the orthogonal matrix \(\mathbf{Q} \) from the reduction to Hessenberg form; if \(\text{compz} = \text{Nag_InitZ} \), \(\text{z} \) need not be set.

On exit: if \(\text{compz} = \text{Nag_UpdateZ} \) or \(\text{Nag_InitZ} \), \(\text{z} \) contains the orthogonal matrix of the required Schur vectors, unless \(\text{fail} > 0 \).

\(\text{z} \) is not referenced if \(\text{compz} = \text{Nag_NotZ} \).

12: \(\text{pdz} \) – Integer

\textit{Input}

On entry: the stride separating matrix row or column elements (depending on the value of \textit{order}) in the array \(\text{z} \).

\textit{Constraints}:

\begin{itemize}
 \item if \(\text{compz} = \text{Nag_UpdateZ} \) or \(\text{Nag_InitZ} \), \(\text{pdz} \geq \text{max}(1, n) \);
 \item if \(\text{compz} = \text{Nag_NotZ} \), \(\text{pdz} \geq 1 \).
\end{itemize}

13: \(\text{fail} \) – NagError *

\textit{Output}

The NAG error parameter (see the Essential Introduction).

6 Error Indicators and Warnings

\textbf{NE_INT}

On entry, \(n = (\text{value}) \).

Constraint: \(n \geq 0 \).

On entry, \(\text{pdh} = (\text{value}) \).

Constraint: \(\text{pdh} > 0 \).

On entry, \(\text{pdz} = (\text{value}) \).

Constraint: \(\text{pdz} > 0 \).

\textbf{NE_INT_2}

On entry, \(\text{pdh} = (\text{value}) \), \(n = (\text{value}) \).

Constraint: \(\text{pdh} \geq \text{max}(1, n) \).
On entry, $n =$ \textlangle value\rangle, $ilo =$ \textlangle value\rangle, $ihi =$ \textlangle value\rangle.
Constraint: $ilo \geq 1$ and $\min(ilo, n) \leq ihi \leq n$.

On entry, $\text{compz} =$ \textlangle value\rangle, $n =$ \textlangle value\rangle, $pdz =$ \textlangle value\rangle.
Constraint: if $\text{compz} =$ \texttt{Nag_UpdateZ} or \texttt{Nag_InitZ}, $pdz \geq \max(1, n)$;
if $\text{compz} =$ \texttt{Nag_NotZ}, $pdz \geq 1$.

The algorithm has failed to find all the eigenvalues after a total of $30(ihi - ilo + 1)$ iterations.

Memory allocation failed.

On entry, parameter \textlangle value\rangle had an illegal value.

An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please consult NAG for assistance.

The computed Schur factorization is the exact factorization of a nearby matrix $H + E$, where
$$\|E\|_2 = O(\epsilon)\|H\|_2,$$
and ϵ is the \textit{machine precision}.

If λ_i is an exact eigenvalue, and $\tilde{\lambda}_i$ is the corresponding computed value, then
$$|\tilde{\lambda}_i - \lambda_i| \leq \frac{c(n)\epsilon\|H\|_2}{s_i},$$
where $c(n)$ is a modestly increasing function of n, and s_i is the reciprocal condition number of λ_i. The
condition numbers s_i may be computed by calling \texttt{nag_dtrsna} (f08qlc).

The total number of floating-point operations depends on how rapidly the algorithm converges, but is
typically about:

$7n^3$ if only eigenvalues are computed;
$10n^3$ if the Schur form is computed;
$20n^3$ if the full Schur factorization is computed.

The Schur form T has the following structure (referred to as \textit{canonical} Schur form).
If all the computed eigenvalues are real, T is upper triangular, and the diagonal elements of T are the
eigenvalues; $\text{wr}[i] = t_{ii}$, for $i = 1, 2, \ldots, n$ and $\text{wi}[i] = 0.0$.

If some of the computed eigenvalues form complex conjugate pairs, then T has 2 by 2 diagonal blocks. Each
diagonal block has the form
$$\begin{pmatrix}
 t_{ii} & t_{i,i+1} \\
 t_{i+1,i} & t_{i+1,i+1}
\end{pmatrix}
= \begin{pmatrix}
 \alpha & \beta \\
 \gamma & \alpha
\end{pmatrix}$$
where \(\beta \gamma < 0 \). The corresponding eigenvalues are \(\alpha \pm \sqrt{\beta \gamma}; \quad \text{wr}[i] = \text{wr}[i+1] = \alpha; \quad \text{wi}[i] = +\sqrt{\beta \gamma}; \quad \text{wi}[i+1] = -\text{wi}[i] \).

The complex analogue of this function is \text{nag_zhseqr (f08psc)}.

9 Example

To compute all the eigenvalues and the Schur factorization of the upper Hessenberg matrix \(H \), where

\[
H = \begin{pmatrix}
0.3500 & -0.1160 & -0.3886 & -0.2942 \\
-0.5140 & 0.1225 & 0.1004 & 0.1126 \\
0.0000 & 0.6443 & -0.1357 & -0.0977 \\
0.0000 & 0.0000 & 0.4262 & 0.1632
\end{pmatrix}
\]

See also the example for \text{nag_dorghr (f08nfc)}, which illustrates the use of this function to compute the Schur factorization of a general matrix.

9.1 Program Text

\/* \text{nag_dhseqr (f08pec)} Example Program. */
* Copyright 2001 Numerical Algorithms Group.
*/

#include <stdio.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagf08.h>
#include <nagx04.h>

int main(void)
{
 /* Scalars */
 Integer i, j, n, pdh, pdz, wi_len, wr_len;
 Integer exit_status=0;
 NagError fail;
 Nag_OrderType order;
 /* Arrays */
 double *h=0, *wi=0, *wr=0, *z=0;
 #ifdef NAG_COLUMN_MAJOR
 order = Nag_ColMajor;
 #else
 order = Nag_RowMajor;
 #endif
 INIT_FAIL(fail);
 Vprintf("f08pec Example Program Results\n\n");
 /* Skip heading in data file */
 Vscanf("%*\[^
\] ");
 Vscanf("%ld%*\[^
\] ", &n);
 #ifdef NAG_COLUMN_MAJOR
 pdh = n;
 pdz = n;
 #else
 pdh = n;
 pdz = n;
 #endif
 wr_len = n;
 wi_len = n;

 /* Allocate memory */
 if (! (h = NAG_ALLOC(n * n, double))) {
 /* Error handling */
 }
 /* Compute Schur factorization */
 /* Postprocess results */
 Vprintf("\n\n");
 Vprintf("\n\n");
 /* Terminate program */
 exit_status=NAG_SUCCESS;
 return(EXIT_SUCCESS);
}
!(wi = NAG_ALLOC(wi_len, double)) ||
!(wr = NAG_ALLOC(wr_len, double)) ||
!(z = NAG_ALLOC(n * n, double)))
{
 Vprintf("Allocation failure\n");
 exit_status = -1;
 goto END;
}

} /* Read H from data file */
for (i = 1; i <= n; ++i)
{
 for (j = 1; j <= n; ++j)
 Vscanf("%lf", &H(i,j));
 Vscanf("%*[^\n] ");
} /* Calculate the eigenvalues and Schur factorization of H */
f08pec(order, Nag_Schur, Nag_InitZ, n, l, n, h, pdh, wr,
 wi, z, pdz, &fail);
if (fail.code != NE_NOERROR)
{
 Vprintf("Error from f08pec.\n%s\n", fail.message);
 exit_status = 1;
 goto END;
}
Vprintf(" Eigenvalues\n");
for (i = 1; i <= n; ++i)
 Vprintf(" (%8.4f,%8.4f)", wr[i-1], wi[i-1]);
Vprintf("\n");

} /* Print Schur form */
x04cac(order, Nag_GeneralMatrix, Nag_NonUnitDiag, n, n,
 h, pdh, "Schur form", 0, &fail);
if (fail.code != NE_NOERROR)
{
 Vprintf("Error from x04cac.\n%s\n", fail.message);
 exit_status = 1;
 goto END;
}

} /* Print Schur vectors */
Vprintf("\n");
x04cac(order, Nag_GeneralMatrix, Nag_NonUnitDiag, n, n,
 z, pdz, "Schur vectors of H", 0, &fail);
if (fail.code != NE_NOERROR)
{
 Vprintf("Error from x04cac.\n%s\n", fail.message);
 exit_status = 1;
 goto END;
}

END:
if (h) NAG_FREE(h);
if (wi) NAG_FREE(wi);
if (wr) NAG_FREE(wr);
if (z) NAG_FREE(z);

return exit_status;

9.2 Program Data

f08pec Example Program Data

4 :Value of N
0.3500 -0.1160 -0.3886 -0.2942
-0.5140 0.1225 0.1004 0.1126
0.0000 0.6443 -0.1357 -0.0977
0.0000 0.0000 0.4262 0.1632 :End of matrix H
9.3 Program Results

f08pec Example Program Results

Eigenvalues

\[
\begin{aligned}
& (0.7995, 0.0000) \\
& (-0.0994, 0.4008) \\
& (-0.0994, -0.4008) \\
& (-0.1007, 0.0000)
\end{aligned}
\]

Schur form

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.7995</td>
<td>0.0061</td>
<td>-0.1144</td>
<td>-0.0335</td>
</tr>
<tr>
<td>2</td>
<td>0.0000</td>
<td>-0.0994</td>
<td>-0.6483</td>
<td>-0.2026</td>
</tr>
<tr>
<td>3</td>
<td>0.0000</td>
<td>0.2477</td>
<td>-0.0994</td>
<td>-0.3474</td>
</tr>
<tr>
<td>4</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>-0.1007</td>
</tr>
</tbody>
</table>

Schur vectors of \(H \)

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-0.6551</td>
<td>-0.3450</td>
<td>-0.1036</td>
<td>0.6641</td>
</tr>
<tr>
<td>2</td>
<td>0.5972</td>
<td>-0.1706</td>
<td>0.5246</td>
<td>0.5823</td>
</tr>
<tr>
<td>3</td>
<td>0.3845</td>
<td>-0.7143</td>
<td>-0.5789</td>
<td>-0.0821</td>
</tr>
<tr>
<td>4</td>
<td>0.2576</td>
<td>0.5845</td>
<td>-0.6156</td>
<td>0.4616</td>
</tr>
</tbody>
</table>