NAG C Library Function Document

nag_zgebak (f08nwc)

1 Purpose

nag_zgebak (f08nwc) transforms eigenvectors of a balanced matrix to those of the original complex general matrix.

2 Specification

void nag_zgebak (Nag_OrderType order, Nag_JobType job, Nag_SideType side, Integer n, Integer ilo, Integer ihi, const double scale[], Integer m, Complex v[], Integer pdv, NagError *fail)

3 Description

nag_zgebak (f08nwc) is intended to be used after a complex general matrix \(A \) has been balanced by nag_zgebal (f08nvc), and eigenvectors of the balanced matrix \(A_0^0 \) have subsequently been computed.

For a description of balancing, see the document for nag_zgebal (f08nvc). The balanced matrix \(A'' \) is obtained as \(A'' = DPAP^T D^{-1} \), where \(P \) is a permutation matrix and \(D \) is a diagonal scaling matrix. This function transforms left or right eigenvectors as follows:

- If \(x \) is a right eigenvector of \(A'' \), \(P^T D^{-1} x \) is a right eigenvector of \(A \);
- If \(y \) is a left eigenvector of \(A'' \), \(P^T D y \) is a left eigenvector of \(A \);

4 References

None.

5 Parameters

1: order – Nag_OrderType

 On entry: the order parameter specifies the two-dimensional storage scheme being used, i.e., row-major ordering or column-major ordering. C language defined storage is specified by order = Nag_RowMajor. See Section 2.2.1.4 of the Essential Introduction for a more detailed explanation of the use of this parameter.

 Constraint: order = Nag_RowMajor or Nag_ColMajor.

2: job – Nag_JobType

 On entry: this must be the same parameter job as supplied to nag_zgebal (f08nvc).

 Constraint: job = Nag_DoNothing, Nag_Permute, Nag_Scale or Nag_DoBoth.

3: side – Nag_SideType

 On entry: indicates whether left or right eigenvectors are to be transformed, as follows:

 - If side = Nag_LeftSide, left eigenvectors are transformed;
 - If side = Nag_RightSide, right eigenvectors are transformed.

 Constraint: side = Nag_LeftSide or Nag_RightSide.
4: \(n \) – Integer
 \textit{Input}

 On entry: \(n \), the number of rows of the matrix of eigenvectors.

 Constraint: \(n \geq 0 \).

5: \(\text{ilo} \) – Integer
6: \(\text{ihi} \) – Integer
 \textit{Input}

 On entry: the values \(\text{ilo} \) and \(\text{ihi} \), as returned by nag_zgebal (f08nvc).

 Constraints:

 \[
 \begin{align*}
 \text{if } n > 0, & 1 \leq \text{ilo} \leq \text{ihi} \leq n; \\
 \text{if } n = 0, & \text{ilo} = 1 \text{ and } \text{ihi} = 0.
 \end{align*}
 \]

7: \(\text{scale}[\text{dim}] \) – const double
 \textit{Input}

 Note: the dimension, \(\text{dim} \), of the array \(\text{scale} \) must be at least \(\max(1,n) \).

 On entry: details of the permutations and/or the scaling factors used to balance the original complex general matrix, as returned by nag_zgebal (f08nvc).

8: \(m \) – Integer
 \textit{Input}

 On entry: \(m \), the number of columns of the matrix of eigenvectors.

 Constraint: \(m \geq 0 \).

9: \(\text{v}[\text{dim}] \) – Complex
 \textit{Input/Output}

 Note: the dimension, \(\text{dim} \), of the array \(\text{v} \) must be at least \(\max(1,pdv \times m) \) when \(\text{order} = \text{Nag_ColMajor} \) and at least \(\max(1,pdv \times n) \) when \(\text{order} = \text{Nag_RowMajor} \).

 If \(\text{order} = \text{Nag_ColMajor} \), the \((i,j)\)th element of the matrix \(V \) is stored in \(\text{v}[(j-1) \times pdv + i - 1] \) and if \(\text{order} = \text{Nag_RowMajor} \), the \((i,j)\)th element of the matrix \(V \) is stored in \(\text{v}[(i-1) \times pdv + j - 1] \).

 On entry: the matrix of left or right eigenvectors to be transformed.

 On exit: the transformed eigenvectors.

10: \(pdv \) – Integer
 \textit{Input}

 On entry: the stride separating matrix row or column elements (depending on the value of \(\text{order} \)) in the array \(\text{v} \).

 Constraints:

 \[
 \begin{align*}
 \text{if } \text{order} = \text{Nag_ColMajor}, \ & pdv \geq \max(1,n); \\
 \text{if } \text{order} = \text{Nag_RowMajor}, \ & pdv \geq \max(1,m).
 \end{align*}
 \]

11: \(\text{fail} \) – NagError *
 \textit{Output}

 The NAG error parameter (see the Essential Introduction).

6 Error Indicators and Warnings

NE_INT

On entry, \(n = \langle \text{value} \rangle \).

Constraint: \(n \geq 0 \).

On entry, \(m = \langle \text{value} \rangle \).

Constraint: \(m \geq 0 \).

On entry, \(pdv = \langle \text{value} \rangle \).

Constraint: \(pdv > 0 \).
NE_INT_2

On entry, \(pdv = \langle value \rangle \), \(n = \langle value \rangle \).
Constraint: \(pdv \geq \max(1, n) \).

On entry, \(pdv = \langle value \rangle \), \(m = \langle value \rangle \).
Constraint: \(pdv \geq \max(1, m) \).

NE_INT_3

On entry, \(n = \langle value \rangle \), \(ilo = \langle value \rangle \), \(ihi = \langle value \rangle \).
Constraint: if \(n > 0 \), \(1 \leq ilo \leq ihi \leq n \);
if \(n = 0 \), \(ilo = 1 \) and \(ihi = 0 \).

NE_ALLOC_FAIL

Memory allocation failed.

NE_BAD_PARAM

On entry, parameter \(\langle value \rangle \) had an illegal value.

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the call is correct then please consult NAG for assistance.

7 Accuracy

The errors are negligible.

8 Further Comments

The total number of real floating-point operations is approximately proportional to \(nm \).

The real analogue of this function is nag_dgebak (f08njc).

9 Example

See Section 9 of the document for nag_zgebal (f08nvc).