NAG C Library Function Document
nag_zgehdr (f08nsc)

1 Purpose

nag_zgehdr (f08nsc) reduces a complex general matrix to Hessenberg form.

2 Specification

void nag_zgehdr (Nag_OrderType order, Integer n, Integer ilo, Integer ihi, Complex a[], Integer pda, Complex tau[], NagError *fail)

3 Description

nag_zgehdr (f08nsc) reduces a complex general matrix A to upper Hessenberg form H by a unitary similarity transformation: $A = QH{Q}^{H}$. H has real subdiagonal elements.

The matrix Q is not formed explicitly, but is represented as a product of elementary reflectors (see the f08 Chapter Introduction for details). Functions are provided to work with Q in this representation (see Section 8).

The function can take advantage of a previous call to nag_zgebal (f08nvc), which may produce a matrix with the structure:

$$
\begin{pmatrix}
A_{11} & A_{12} & A_{13} \\
A_{22} & A_{23} \\
A_{33}
\end{pmatrix}
$$

where A_{11} and A_{33} are upper triangular. If so, only the central diagonal block A_{22}, in rows and columns i_{lo} to i_{hi}, needs to be reduced to Hessenberg form (the blocks A_{12} and A_{23} will also be affected by the reduction). Therefore the values of i_{lo} and i_{hi} determined by nag_zgebal (f08nvc) can be supplied to the function directly. If nag_zgebal (f08nvc) has not previously been called however, then i_{lo} must be set to 1 and i_{hi} to n.

4 References

5 Parameters

1: order – Nag_OrderType

 Input

 On entry: the order parameter specifies the two-dimensional storage scheme being used, i.e., row-major ordering or column-major ordering. C language defined storage is specified by order = Nag_RowMajor. See Section 2.2.1.4 of the Essential Introduction for a more detailed explanation of the use of this parameter.

 Constraint: order = Nag_RowMajor or Nag_ColMajor.

2: n – Integer

 Input

 On entry: n, the order of the matrix A.

 Constraint: $n \geq 0$.
3: \text{ilo} – Integer
\text{Input}

4: \text{ihi} – Integer
\text{Input}

\text{On entry: if } A \text{ has been output by nag_zgebal (f08nvc), then } \text{ilo} \text{ and } \text{ihi} \text{ must contain the values returned by that function. Otherwise, } \text{ilo} \text{ must be set to 1 and } \text{ihi} \text{ to } n.

\text{Constraints:}
\begin{align*}
& \text{if } n > 0, 1 \leq \text{ilo} \leq \text{ihi} \leq n; \\
& \text{if } n = 0, \text{ilo} = 1 \text{ and } \text{ihi} = 0.
\end{align*}

5: \text{a}[\text{dim}] – Complex
\text{Input/Output}

\text{Note: the dimension, } \text{dim}, \text{ of the array } \text{a} \text{ must be at least } \max(1, \text{pda} \times n).

\text{If } \text{order} = \text{Nag_ColMajor}, \text{ the } (i, j)\text{th element of the matrix } A \text{ is stored in } \text{a}[(j - 1) \times \text{pda} + i - 1] \text{ and if } \text{order} = \text{Nag_RowMajor}, \text{ the } (i, j)\text{th element of the matrix } A \text{ is stored in } \text{a}[(i - 1) \times \text{pda} + j - 1].

\text{On entry: the } n \text{ by } n \text{ general matrix } A.

\text{On exit: } A \text{ is overwritten by the upper Hessenberg matrix } H \text{ and details of the unitary matrix } Q. \text{ The subdiagonal elements of } H \text{ are real.}

6: \text{pda} – Integer
\text{Input}

\text{On entry: the stride separating matrix row or column elements (depending on the value of } \text{order} \text{) in the array } \text{a}.

\text{Constraint: } \text{pda} \geq \max(1, n).

7: \text{tau}[\text{dim}] – Complex
\text{Output}

\text{Note: the dimension, } \text{dim}, \text{ of the array } \text{tau} \text{ must be at least } \max(1, n - 1).

\text{On exit: further details of the unitary matrix } Q.

8: \text{fail} – NagError *
\text{Output}

\text{The NAG error parameter (see the Essential Introduction).}

6 \text{Error Indicators and Warnings}

\text{NE_INT}

\text{On entry, } n = \langle \text{value} \rangle.
\text{Constraint: } n \geq 0.
\text{On entry, } \text{pda} = \langle \text{value} \rangle.
\text{Constraint: } \text{pda} > 0.

\text{NE_INT_2}

\text{On entry, } \text{pda} = \langle \text{value} \rangle, \text{ n} = \langle \text{value} \rangle.
\text{Constraint: } \text{pda} \geq \max(1, n).

\text{NE_INT_3}

\text{On entry, } n = \langle \text{value} \rangle, \text{ ilo} = \langle \text{value} \rangle, \text{ ihi} = \langle \text{value} \rangle.
\text{Constraint: if } n > 0, 1 \leq \text{ilo} \leq \text{ihi} \leq n; \\
\text{if } n = 0, \text{ilo} = 1 \text{ and } \text{ihi} = 0.

\text{NE_ALLOC_FAIL}

\text{Memory allocation failed.}
NE_BAD_PARAM

On entry, parameter (value) had an illegal value.

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please consult NAG for assistance.

7 Accuracy

The computed Hessenberg matrix \(H \) is exactly similar to a nearby matrix \(A + E \), where
\[
\| E \|_2 \leq c(n)\epsilon\| A \|_2,
\]
c\((n) \) is a modestly increasing function of \(n \), and \(\epsilon \) is the machine precision.
The elements of \(H \) themselves may be sensitive to small perturbations in \(A \) or to rounding errors in the
computation, but this does not affect the stability of the eigenvalues, eigenvectors or Schur factorization.

8 Further Comments

The total number of real floating-point operations is approximately
\[
\frac{8}{3} q^2 (2q + 3n), \quad \text{where} \quad q = ihi - ilo; \text{ if} \quad ilo = 1 \text{ and } ihi = n, \text{ the number is approximately } \frac{40}{3} n^3.
\]
To form the unitary matrix \(Q \) this function may be followed by a call to nag_zunghr (f08ntc):
\[
nag_zunghr (\text{order}, n, ilo, ihi, \& a, pda, tau, \& fail)
\]
To apply \(Q \) to an \(m \) by \(n \) complex matrix \(C \) this function may be followed by a call to nag_zunmhr
(f08nuc). For example,
\[
nag_zunmhr (\text{order}, Nag_LeftSide, Nag_NoTrans, m, n, ilo, ihi, \& a, pda, tau, \& c, pdc, \& fail)
\]
forms the matrix product \(QC \).
The real analogue of this function is nag_dgehrd (f08nec).

9 Example

To compute the upper Hessenberg form of the matrix \(A \), where
\[
A = \begin{pmatrix}
-3.97 - 5.04i & -4.11 + 3.70i & -0.34 + 1.01i & 1.29 - 0.86i \\
0.34 - 1.50i & 1.52 - 0.43i & 1.88 - 5.38i & 3.36 + 0.65i \\
3.31 - 3.85i & 2.50 + 3.45i & 0.88 - 1.08i & 0.64 - 1.48i \\
-1.10 + 0.82i & 1.81 - 1.59i & 3.25 + 1.33i & 1.57 - 3.44i
\end{pmatrix}
\]

9.1 Program Text

/* nag_zgehrd (f08nsc) Example Program. *
 * * Copyright 2001 Numerical Algorithms Group. *
 * * Mark 7, 2001. *
 */
#include <stdio.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagf08.h>
#include <nagx04.h>

int main(void)
{
 /* Scalars */
 Integer i, j, n, pda, tau_len;
```c
Integer exit_status=0;
NagError fail;
Nag_OrderType order;
/* Arrays */
Complex *a=0, *tau=0;

#ifdef NAG_COLUMN_MAJOR
#define A(I,J) a[(J-1)*pda + I - 1]
order = Nag_ColMajor;
#else
#define A(I,J) a[(I-1)*pda + J - 1]
order = Nag_RowMajor;
#endif

INIT_FAIL(fail);
Vprintf("f08nsc Example Program Results\n\n");

/* Skip heading in data file */
Vscanf("%*[^
] ");
Vscanf("%ld%*[^
] ", &n);
#ifdef NAG_COLUMN_MAJOR
pda = n;
#else
pda = n;
#endif
tau_len = n - 1;

/* Allocate memory */
if ( !(a = NAG_ALLOC(n * n, Complex)) ||
     !(tau = NAG_ALLOC(tau_len, Complex)) )
{
    Vprintf("Allocation failure\n");
    exit_status = -1;
    goto END;
}

/* Read A from data file */
for (i = 1; i <= n; ++i)
{
    for (j = 1; j <= n; ++j)
        Vscanf(" ( %lf , %lf )", &A(i,j).re, &A(i,j).im);
}
Vscanf("%*[^
] ");

/* Reduce A to upper Hessenberg form */
f08nsc(order, n, 1, n, a, pda, tau, &fail);
if (fail.code != NE_NOERROR)
{
    Vprintf("Error from f08nsc.\n%s\n", fail.message);
    exit_status = 1;
    goto END;
}

/* Set the elements below the first sub-diagonal to zero */
for (i = 1; i <= n - 2; ++i)
{
    for (j = i + 2; j <= n; ++j)
        A(j, i).re = 0.0, A(j, i).im = 0.0;
}

/* Print upper Hessenberg form */
x04dbc(order, Nag_GeneralMatrix, Nag_NonUnitDiag, n, n, a, pda, Nag_BracketForm, "%7.4f",
"Upper Hessenberg form", Nag_IntegerLabels, 0, Nag_IntegerLabels, 0, 80, 0, 0, &fail);
if (fail.code != NE_NOERROR)
{
    Vprintf("Error from x04dbc.\n%s\n", fail.message);
    exit_status = 1;
    goto END;
}
```
if (a) NAG_FREE(a);
if (tau) NAG_FREE(tau);
return exit_status;
}

9.2 Program Data

f08nsc Example Program Data

4 :Value of N

(-3.97,-5.04) (-4.11, 3.70) (-0.34, 1.01) (1.29,-0.86)
(0.34,-1.50) (1.52,-0.43) (1.88,-5.38) (3.36, 0.65)
(3.31,-3.85) (2.50, 3.45) (0.88,-1.08) (0.64,-1.48)
(-1.10, 0.82) (1.81,-1.59) (3.25, 1.33) (1.57,-3.44) :End of matrix A

9.3 Program Results

f08nsc Example Program Results

Upper Hessenberg form

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(-3.9700,-5.0400)</td>
<td>(-1.1318,-2.5693)</td>
<td>(-4.6027,-0.1426)</td>
<td>(-1.4249, 1.7330)</td>
</tr>
<tr>
<td>2</td>
<td>(-5.4797, 0.0000)</td>
<td>(1.8585,-1.5502)</td>
<td>(4.4145,-0.7638)</td>
<td>(-0.4805,-1.1976)</td>
</tr>
<tr>
<td>3</td>
<td>(0.0000, 0.0000)</td>
<td>(6.2673, 0.0000)</td>
<td>(-0.4504,-0.0290)</td>
<td>(-1.3467, 1.6579)</td>
</tr>
<tr>
<td>4</td>
<td>(0.0000, 0.0000)</td>
<td>(0.0000, 0.0000)</td>
<td>(-3.5000, 0.0000)</td>
<td>(2.5619,-3.3708)</td>
</tr>
</tbody>
</table>