NAG C Library Function Document

nag_zgbbrd (f08lsc)

1 Purpose

nag_zgbbrd (f08lsc) reduces a complex m by n band matrix to real upper bidiagonal form.

2 Specification

```c
void nag_zgbbrd (Nag_OrderType order, Nag_VectType vect, Integer m, Integer n,
                Integer ncc, Integer kl, Integer ku, Complex ab[], Integer pdab,
                double d[], double e[], Complex q[], Integer pdq, Complex pt[],
                Integer pdpt, Complex c[], Integer pdc, NagError *fail)
```

3 Description

nag_zgbbrd (f08lsc) reduces a complex m by n band matrix to real upper bidiagonal form B by a unitary transformation: $A = QBP^H$. The unitary matrices Q and P^H, of order m and n respectively, are determined as a product of Givens rotation matrices, and may be formed explicitly by the function if required. A matrix C may also be updated to give $C = Q^HC$.

The function uses a vectorisable form of the reduction.

4 References

None.

5 Parameters

1: `order` – Nag_OrderType

 On entry: the `order` parameter specifies the two-dimensional storage scheme being used, i.e., row-major ordering or column-major ordering. C language defined storage is specified by `order = Nag_RowMajor`. See Section 2.2.1.4 of the Essential Introduction for a more detailed explanation of the use of this parameter.

 Constraint: `order` = `Nag_RowMajor` or `Nag_ColMajor`.

2: `vect` – Nag_VectType

 On entry: indicates whether the matrices Q and/or P^H are generated:

 - if `vect = Nag_DoNotForm`, then neither Q nor P^H is generated;
 - if `vect = Nag_FormQ`, then Q is generated;
 - if `vect = Nag_FormP`, then P^H is generated;
 - if `vect = Nag_FormBoth`, then both Q and P^H are generated.

 Constraint: `vect` = `Nag_DoNotForm`, `Nag_FormQ`, `Nag_FormP` or `Nag_FormBoth`.

3: `m` – Integer

 On entry: m, the number of rows of the matrix A.

 Constraint: $m \geq 0$.
4: \(n \) – Integer \(\text{Input} \)

On entry: \(n \), the number of columns of the matrix \(A \).
Constraint: \(n \geq 0 \).

5: \(\text{ncc} \) – Integer \(\text{Input} \)

On entry: \(n_c \), the number of columns of the matrix \(C \).
Constraint: \(\text{ncc} \geq 0 \).

6: \(\text{kl} \) – Integer \(\text{Input} \)

On entry: \(k_l \), the number of sub-diagonals within the band of \(A \).
Constraint: \(\text{kl} \geq 0 \).

7: \(\text{ku} \) – Integer \(\text{Input} \)

On entry: \(k_u \), the number of super-diagonals within the band of \(A \).
Constraint: \(\text{ku} \geq 0 \).

8: \(\text{ab}[\text{dim}] \) – Complex \(\text{Input/Output} \)

Note: the dimension, \(\text{dim} \), of the array \(\text{ab} \) must be at least \(\max(1, \text{pdab} \times n) \) when \(\text{order} = \text{Nag_ColMajor} \) and at least \(\max(1, \text{pdab} \times m) \) when \(\text{order} = \text{Nag_RowMajor} \).

On entry: the original \(m \) by \(n \) band matrix \(A \). This is stored as a notional two-dimensional array with row elements or column elements stored contiguously. The storage of elements \(a_{ij} \), for \(i = 1, \ldots, m \) and \(j = \max(1, i - k_l), \ldots, \min(n, i + k_u) \), depends on the \(\text{order} \) parameter as follows:

- if \(\text{order} = \text{Nag_ColMajor} \), \(a_{ij} \) is stored as \(\text{ab}[(j - 1) \times \text{pdab} + k_u + i - j] \);
- if \(\text{order} = \text{Nag_RowMajor} \), \(a_{ij} \) is stored as \(\text{ab}[(i - 1) \times \text{pdab} + k_l + j - i] \).

On exit: \(A \) is overwritten by values generated during the reduction.

9: \(\text{pdab} \) – Integer \(\text{Input} \)

On entry: the stride separating row or column elements (depending on the value of \(\text{order} \)) of the matrix \(A \) in the array \(\text{ab} \).
Constraint: \(\text{pdab} \geq \text{kl} + \text{ku} + 1 \).

10: \(\text{d}[\text{dim}] \) – double \(\text{Output} \)

Note: the dimension, \(\text{dim} \), of the array \(\text{d} \) must be at least \(\max(1, \min(m, n)) \).

On exit: the diagonal elements of the bidiagonal matrix \(B \).

11: \(\text{e}[\text{dim}] \) – double \(\text{Output} \)

Note: the dimension, \(\text{dim} \), of the array \(\text{e} \) must be at least \(\max(1, \min(m, n) - 1) \).

On exit: the super-diagonal elements of the bidiagonal matrix \(B \).

12: \(\text{q}[\text{dim}] \) – Complex \(\text{Output} \)

Note: the dimension, \(\text{dim} \), of the array \(\text{q} \) must be at least \(\max(1, \text{pdq} \times m) \) when \(\text{vect} = \text{Nag_FormQ} \) or \(\text{Nag_FormBoth} \) and at least 1 otherwise.

If \(\text{order} = \text{Nag_ColMajor} \), the \((i, j)\)th element of the matrix \(Q \) is stored in \(\text{q}[(j - 1) \times \text{pdq} + i - 1] \) and if \(\text{order} = \text{Nag_RowMajor} \), the \((i, j)\)th element of the matrix \(Q \) is stored in \(\text{q}[(i - 1) \times \text{pdq} + j - 1] \).

On exit: the \(m \) by \(m \) unitary matrix \(Q \), if \(\text{vect} = \text{Nag_FormQ} \) or \(\text{Nag_FormBoth} \).
13: **pdq** – Integer
 Input

 On entry: the stride separating matrix row or column elements (depending on the value of *order*) in the array *q*.

 Constraints:

 if *vect* = *Nag_FormQ* or *Nag_FormBoth*, *pdq* ≥ max(1, *m*);
 otherwise *pdq* ≥ 1.

14: **pt**[`dim`] – Complex
 Output

 Note: the dimension, *dim*, of the array *pt* must be at least max(1, *pdpt* × *n*) when *vect* = *Nag_FormP* or *Nag_FormBoth* and at least 1 otherwise.

 If *order* = *Nag_ColMajor*, the (i, j)th element of the matrix is stored in *pt*[(j - 1) × *pdpt* + i - 1] and if *order* = *Nag_RowMajor*, the (i, j)th element of the matrix is stored in *pt*[(i - 1) × *pdpt* + j - 1].

 On exit: the *n* by *n* unitary matrix *P*^H, if *vect* = *Nag_FormP* or *Nag_FormBoth*.
 pt is not referenced if *vect* = *Nag_DoNotForm* or *Nag_FormQ*.

15: **pdpt** – Integer
 Input

 On entry: the stride separating matrix row or column elements (depending on the value of *order*) in the array *pt*.

 Constraints:

 if *vect* = *Nag_FormP* or *Nag_FormBoth*, *pdpt* ≥ max(1, *n*);
 otherwise *pdpt* ≥ 1.

16: **c**[`dim`] – Complex
 Input/Output

 Note: the dimension, *dim*, of the array *c* must be at least max(1, *pdc* × *ncc*) when *order* = *Nag_ColMajor* and at least max(1, *pdc* × *m*) when *order* = *Nag_RowMajor*.

 If *order* = *Nag_ColMajor*, the (i, j)th element of the matrix *C* is stored in *c*[(j - 1) × *pdc* + i - 1] and if *order* = *Nag_RowMajor*, the (i, j)th element of the matrix *C* is stored in *c*[(i - 1) × *pdc* + j - 1].

 On entry: an *m* by *nC* matrix *C*.

 On exit: *C* is overwritten by *Q*^H *C*.
 c is not referenced if *ncc* = 0.

17: **pdc** – Integer
 Input

 On entry: the stride separating matrix row or column elements (depending on the value of *order*) in the array *c*.

 Constraints:

 if *order* = *Nag_ColMajor*,

 if *ncc* > 0, *pdc* ≥ max(1, *m*);
 if *ncc* = 0, *pdc* ≥ 1;

 if *order* = *Nag_RowMajor*, *pdc* ≥ max(1, *ncc*).

18: **fail** – NagError *
 Output

 The NAG error parameter (see the Essential Introduction).
6 Error Indicators and Warnings

NE_INT

On entry, $m = \langle value \rangle$.
Constraint: $m \geq 0$.

On entry, $n = \langle value \rangle$.
Constraint: $n \geq 0$.

On entry, $ncc = \langle value \rangle$.
Constraint: $ncc \geq 0$.

On entry, $kl = \langle value \rangle$.
Constraint: $kl \geq 0$.

On entry, $ku = \langle value \rangle$.
Constraint: $ku \geq 0$.

On entry, $pdab = \langle value \rangle$.
Constraint: $pdab > 0$.

On entry, $pdq = \langle value \rangle$.
Constraint: $pdq > 0$.

On entry, $pdpt = \langle value \rangle$.
Constraint: $pdpt > 0$.

On entry, $pdc = \langle value \rangle$.
Constraint: $pdc > 0$.

NE_INT_2

On entry, $pdq = \langle value \rangle$, $m = \langle value \rangle$.
Constraint: if $vect = \text{Nag_FormQ}$ or Nag_FormBoth, $pdq \geq \max(1, m)$; otherwise $pdq \geq 1$.

On entry, $pdc = \langle value \rangle$, $ncc = \langle value \rangle$.
Constraint: $pdc \geq \max(1, ncc)$.

NE_INT_3

On entry, $kl = \langle value \rangle$, $ku = \langle value \rangle$, $pdab = \langle value \rangle$.
Constraint: $pdab \geq kl + ku + 1$.

On entry, $m = \langle value \rangle$, $ncc = \langle value \rangle$, $pdc = \langle value \rangle$.
Constraint: if $ncc > 0$, $pdc \geq \max(1, m)$; if $ncc = 0$, $pdc \geq 1$.

NE_ENUM_INT_2

On entry, $vect = \langle value \rangle$, $m = \langle value \rangle$, $pdq = \langle value \rangle$.
Constraint: if $vect = \text{Nag_FormQ}$ or Nag_FormBoth, $pdq \geq \max(1, m)$; otherwise $pdq \geq 1$.

On entry, $vect = \langle value \rangle$, $n = \langle value \rangle$, $pdpt = \langle value \rangle$.
Constraint: if $vect = \text{Nag_FormP}$ or Nag_FormBoth, $pdpt \geq \max(1, n)$; otherwise $pdpt \geq 1$.

NE_ALLOC_FAIL

Memory allocation failed.

NE_BAD_PARAM

On entry, parameter $\langle value \rangle$ had an illegal value.
NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the call is correct then please consult NAG for assistance.

7 Accuracy

The computed bidiagonal form B satisfies $QBPH = A + E$, where

$$
\|E\|_2 \leq c(n)\|A\|_2,
$$

$c(n)$ is a modestly increasing function of n, and ϵ is the machine precision.

The elements of B themselves may be sensitive to small perturbations in A or to rounding errors in the computation, but this does not affect the stability of the singular values and vectors.

The computed matrix Q differs from an exactly unitary matrix by a matrix F such that

$$
\|F\|_2 = O(\epsilon).
$$

A similar statement holds for the computed matrix PH.

8 Further Comments

The total number of real floating-point operations is approximately the sum of:

- $20n^2k$, if vect = Nag_DoNotForm and ncc = 0, and
- $10n^2n_c(k-1)/k$, if C is updated, and
- $10n^3(k-1)/k$ if either Q or PH is generated (double this if both),

where $k = k_l + k_u$, assuming $n \gg k$. For this section we assume that $m = n$.

The real analogue of this function is nag_dgbbrd (f08lec).

9 Example

To reduce the matrix A to upper bidiagonal form, where

$$
A = \begin{pmatrix}
0.96 - 0.81i & -0.03 + 0.96i & 0.00 + 0.00i & 0.00 + 0.00i \\
-0.98 + 1.98i & -1.20 + 0.19i & -0.66 + 0.42i & 0.00 + 0.00i \\
0.62 - 0.46i & 1.01 + 0.02i & 0.63 - 0.17i & -1.11 + 0.60i \\
0.00 + 0.00i & 0.19 - 0.54i & -0.98 - 0.36i & 0.22 - 0.20i \\
0.00 + 0.00i & 0.00 + 0.00i & -0.17 - 0.46i & 1.47 + 1.59i \\
0.00 + 0.00i & 0.00 + 0.00i & 0.00 + 0.00i & 0.26 + 0.26i
\end{pmatrix},
$$

9.1 Program Text

/* nag_zgbbrd (f08lsc) Example Program. */
/* Copyright 2001 Numerical Algorithms Group. */
/* Mark 7, 2001. */

#include <stdio.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagf08.h>

int main(void)
{
 /* Scalars */
 Integer i, j, kl, ku, m, n, ncc, pdab, pdc, pdq, pdpt;
 Integer d_len, e_len;
 Integer exit_status=0;
}
NagError fail;
Nag_OrderType order;
/* Arrays */
Complex *ab=0, *c=0, *pt=0, *q=0;
double *d=0, *e=0;
#endif NAG_COLUMN_MAJOR
#define AB(I,J) ab[(J-1)*pdab + ku + I - J]
order = Nag_ColMajor;
#else
#define AB(I,J) ab[(I-1)*pdab + kl + J - I]
order = Nag_RowMajor;
#endif
INIT_FAIL(fail);
Vprintf("f08lsc Example Program Results\n");
/* Skip heading in data file */
Vscanf("%[^
] ");
Vscanf("%ld%ld%ld%ld%ld%[
] ", &m, &n, &kl, &ku, &ncc);
#endif NAG_COLUMN_MAJOR
pdab = kl + ku + 1;
pdq = m;
pdpt = n;
pdc = m;
#else
pdab = kl + ku + 1;
pdq = m;
pdpt = n;
pdc = MAX(1,ncc);
#endif
// Allocate memory */
if (!(ab = NAG_ALLOC((kl+ku+1) * m, Complex))
||
!(c = NAG_ALLOC(m * MAX(1,ncc), Complex))
||
!(d = NAG_ALLOC(d_len, double))
||
!(e = NAG_ALLOC(e_len, double))
||
!(pt = NAG_ALLOC(n * n, Complex))
||
!(q = NAG_ALLOC(m * m, Complex)))
{
Vprintf("Allocation failure\n");
exit_status = -1;
goto END;
}
/* Read A from data file */
for (i = 1; i <= m; ++i)
{
for (j = MAX(1,i-kl); j <= MIN(n,i+ku); ++j)
Vscanf(" (%lf , %lf)", &AB(i,j).re, &AB(i,j).im);
}
Vscanf("%[^
] ");
/* Reduce A to bidiagonal form */
f08lsc(order, Nag_DoNotForm, m, n, ncc, kl, ku, ab,
pdab, d, e, q, pdq, pt, pdpt, c, pdc, &fail);
if (fail.code != NE_NOERROR)
{
Vprintf("Error from f08lsc.\n", fail.message);
exit_status = 1;
goto END;
}
/* Print bidiagonal form */
Vprintf("nDiagonal\n");
for (i = 1; i <= MIN(m,n); ++i)
Vprintf("%9.4f%s", d[i-1], i%8==0 ?"\n":" ");
if (m >= n)
Vprintf("nSuper-diagonal\n");
else

f08lsc.6

NAG C Library Manual
Vprintf("\nSub-diagonal\n");
for (i = 1; i <= MIN(m,n) - 1; ++i)
 Vprintf("%9.4f%s", e[i-1], i%8==0 ?"\n":" ");
Vprintf("\n");

END:
if (ab) NAG_FREE(ab);
if (c) NAG_FREE(c);
if (d) NAG_FREE(d);
if (e) NAG_FREE(e);
if (pt) NAG_FREE(pt);
if (q) NAG_FREE(q);

return exit_status;
}

9.2 Program Data

f08lsc Example Program Data
6 4 2 1 0 :Values of M, N, KL, KU and NCC
(0.96,-0.81) (-0.03, 0.96)
(-0.98, 1.98) (-1.20, 0.19) (-0.66, 0.42)
(0.62,-0.46) (1.01, 0.02) (0.63,-0.17) (-1.11, 0.60)
(0.19,-0.54) (-0.98,-0.36) (0.22,-0.20)
(-0.17,-0.46) (1.47, 1.59)
(0.26, 0.26) :End of matrix A

9.3 Program Results

f08lsc Example Program Results

Diagonal
2.6560 1.7501 2.0607 0.8658
Super-diagonal
 1.7033 1.2800 0.1467