1 Purpose

nag_dgbbrd (f08lec) reduces a real m by n band matrix to upper bidiagonal form.

2 Specification

```c
void nag_dgbbrd (Nag_OrderType order, Nag_VectType vect, Integer m, Integer n,
                Integer ncc, Integer kl, Integer ku, double ab[], Integer pdab,
                double d[], double e[], double q[], Integer pdq, double pt[],
                Integer pdpt, double c[], Integer pdc, NagError *fail)
```

3 Description

nag_dgbbrd (f08lec) reduces a real m by n band matrix to upper bidiagonal form B by an orthogonal transformation: $A = QBPT$. The orthogonal matrices Q and P^T, of order m and n respectively, are determined as a product of Givens rotation matrices, and may be formed explicitly by the function if required. A matrix C may also be updated to give $~CC = QT C$.

The function uses a vectorisable form of the reduction.

4 References

None.

5 Parameters

1: `order` – Nag_OrderType

Input

On entry: the `order` parameter specifies the two-dimensional storage scheme being used, i.e., row-major ordering or column-major ordering. C language defined storage is specified by `order = Nag_RowMajor`. See Section 2.2.1.4 of the Essential Introduction for a more detailed explanation of the use of this parameter.

Constraint: `order = Nag_RowMajor` or `Nag_ColMajor`.

2: `vect` – Nag_VectType

Input

On entry: indicates whether the matrices Q and/or P^T are generated:

- if `vect = Nag_DoNotForm`, then neither Q nor P^T is generated;
- if `vect = Nag_FormQ`, then Q is generated;
- if `vect = Nag_FormP`, then P^T is generated;
- if `vect = Nag_FormBoth`, then both Q and P^T are generated.

Constraint: `vect = Nag_DoNotForm`, `Nag_FormQ`, `Nag_FormP` or `Nag_FormBoth`.

3: `m` – Integer

Input

On entry: m, the number of rows of the matrix A.

Constraint: $m \geq 0$.

[NP3645/7]
4: \textbf{n} – Integer
\textit{Input}
\textit{On entry: } \textit{n}, the number of columns of the matrix \textit{A}.
\textit{Constraint: } \textit{n} \geq 0.

5: \textbf{ncc} – Integer
\textit{Input}
\textit{On entry: } \textit{nC}, the number of columns of the matrix \textit{C}.
\textit{Constraint: } \textit{ncc} \geq 0.

6: \textbf{kl} – Integer
\textit{Input}
\textit{On entry: } \textit{k}, the number of sub-diagonals within the band of \textit{A}.
\textit{Constraint: } \textit{kl} \geq 0.

7: \textbf{ku} – Integer
\textit{Input}
\textit{On entry: } \textit{k}, the number of super-diagonals within the band of \textit{A}.
\textit{Constraint: } \textit{ku} \geq 0.

8: \textbf{ab[\textit{dim}]} – double
\textit{Input/Output}
\textit{Note: } the dimension, \textit{dim}, of the array \textit{ab} must be at least \textit{max(1,pdab \times n)} when \textit{order} = \textit{Nag_ColMajor} and at least \textit{max(1,pdab \times m)} when \textit{order} = \textit{Nag_RowMajor}.
\textit{On entry: } the original \textit{m} by \textit{n} band matrix \textit{A}. This is stored as a notional two-dimensional array with row elements or column elements stored contiguously. The storage of elements \textit{a}_{ij}, for \textit{i} = 1, \ldots, \textit{m} and \textit{j} = \textit{max(1,i - k)}, \ldots, \textit{min(n,i + k)}, depends on the \textit{order} parameter as follows:
\begin{align*} & \text{if } \textit{order} = \textit{Nag_ColMajor}, \textit{a}_{ij} \text{ is stored as } \textit{ab} [(\textit{j} - 1) \times \textit{pdab} + \textit{ku} + \textit{i} - \textit{j}]; \\
& \text{if } \textit{order} = \textit{Nag_RowMajor}, \textit{a}_{ij} \text{ is stored as } \textit{ab} [(\textit{i} - 1) \times \textit{pdab} + \textit{kl} + \textit{j} - \textit{i}].
\end{align*}
\textit{On exit: } \textit{A} is overwritten by values generated during the reduction.

9: \textbf{pdab} – Integer
\textit{Input}
\textit{On entry: } the stride separating row or column elements (depending on the value of \textit{order}) of the matrix \textit{A} in the array \textit{ab}.
\textit{Constraint: } \textit{pdab} \geq \textit{kl} + \textit{ku} + 1.

10: \textbf{d[\textit{dim}]} – double
\textit{Output}
\textit{Note: } the dimension, \textit{dim}, of the array \textit{d} must be at least \textit{max(1,min(m,n))}.
\textit{On exit: } the diagonal elements of the bidiagonal matrix \textit{B}.

11: \textbf{e[\textit{dim}]} – double
\textit{Output}
\textit{Note: } the dimension, \textit{dim}, of the array \textit{e} must be at least \textit{max(1,min(m,n) - 1)}.
\textit{On exit: } the super-diagonal elements of the bidiagonal matrix \textit{B}.

12: \textbf{q[\textit{dim}]} – double
\textit{Output}
\textit{Note: } the dimension, \textit{dim}, of the array \textit{q} must be at least \textit{max(1,pdq \times m)} when \textit{vect} = \textit{Nag_FormQ} or \textit{Nag_FormBoth} and at least 1 otherwise.
\textit{If order} = \textit{Nag_ColMajor}, the \textit{(i,j)}th element of the matrix \textit{Q} is stored in \textit{q} [(\textit{j} - 1) \times \textit{pdq} + \textit{i} - 1] and if \textit{order} = \textit{Nag_RowMajor}, the \textit{(i,j)}th element of the matrix \textit{Q} is stored in \textit{q} [(\textit{i} - 1) \times \textit{pdq} + \textit{j} - 1].
\textit{On exit: } the \textit{m} by \textit{m} orthogonal matrix \textit{Q}, if \textit{vect} = \textit{Nag_FormQ} or \textit{Nag_FormBoth}.

\textit{f08lec.2}
\textit{[NP3645/7]}
q is not referenced if vect = Nag_DoNotForm or Nag_FormP.

13: pdq – Integer

On entry: the stride separating matrix row or column elements (depending on the value of order) in the array q.

Constraints:

if vect = Nag_FormQ or Nag_FormBoth, pdq ≥ max(1, m);
otherwise pdq ≥ 1.

14: pt[dim] – double

Output

Note: the dimension, dim, of the array pt must be at least max(1, pdpt × n) when vect = Nag_FormP or Nag_FormBoth and at least 1 otherwise.

If order = Nag_ColMajor, the (i, j)th element of the matrix is stored in pt[(j - 1) × pdpt + i - 1] and if order = Nag_RowMajor, the (i, j)th element of the matrix is stored in pt[(i - 1) × pdpt + j - 1].

On exit: the n by n orthogonal matrix P^T, if vect = Nag_FormP or Nag_FormBoth.

pt is not referenced if vect = Nag_DoNotForm or Nag_FormQ.

15: pdpt – Integer

Input

On entry: the stride separating matrix row or column elements (depending on the value of order) in the array pt.

Constraints:

if vect = Nag_FormP or Nag_FormBoth, pdpt ≥ max(1, n);
otherwise pdpt ≥ 1.

16: c[dim] – double

Input/Output

Note: the dimension, dim, of the array c must be at least max(1, pdc × ncc) when order = Nag_ColMajor and at least max(1, pdc × m) when order = Nag_RowMajor.

If order = Nag_ColMajor, the (i, j)th element of the matrix C is stored in c[(j - 1) × pdc + i - 1] and if order = Nag_RowMajor, the (i, j)th element of the matrix C is stored in c[(i - 1) × pdc + j - 1].

On entry: an m by nC matrix C.

On exit: C is overwritten by $Q^T C$.

c is not referenced if ncc = 0.

17: pdc – Integer

Input

On entry: the stride separating matrix row or column elements (depending on the value of order) in the array c.

Constraints:

if order = Nag_ColMajor,
 if ncc > 0, pdc ≥ max(1, m);
 if ncc = 0, pdc ≥ 1;
if order = Nag_RowMajor, pdc ≥ max(1, ncc).

18: fail – NagError *

Output

The NAG error parameter (see the Essential Introduction).
6 Error Indicators and Warnings

NE_INT

On entry, \(m = \langle value \rangle \).
Constraint: \(m \geq 0 \).

On entry, \(n = \langle value \rangle \).
Constraint: \(n \geq 0 \).

On entry, \(ncc = \langle value \rangle \).
Constraint: \(ncc \geq 0 \).

On entry, \(kl = \langle value \rangle \).
Constraint: \(kl \geq 0 \).

On entry, \(ku = \langle value \rangle \).
Constraint: \(ku \geq 0 \).

On entry, \(pdab = \langle value \rangle \).
Constraint: \(pdab > 0 \).

On entry, \(pdq = \langle value \rangle \).
Constraint: \(pdq > 0 \).

On entry, \(pdpt = \langle value \rangle \).
Constraint: \(pdpt > 0 \).

On entry, \(pdc = \langle value \rangle \).
Constraint: \(pdc > 0 \).

NE_INT_2

On entry, \(pdq = \langle value \rangle \), \(m = \langle value \rangle \).
Constraint: if \(vect = \text{Nag_FormQ} \) or \(\text{Nag_FormBoth} \), \(pdq \geq \max(1, m) \);
otherwise \(pdq \geq 1 \).

On entry, \(pdc = \langle value \rangle \), \(ncc = \langle value \rangle \).
Constraint: \(pdc \geq \max(1, ncc) \).

NE_INT_3

On entry, \(kl = \langle value \rangle \), \(ku = \langle value \rangle \), \(pdab = \langle value \rangle \).
Constraint: \(pdab \geq kl + ku + 1 \).

On entry, \(m = \langle value \rangle \), \(ncc = \langle value \rangle \), \(pdc = \langle value \rangle \).
Constraint: if \(ncc > 0 \), \(pdc \geq \max(1, m) \);
if \(ncc = 0 \), \(pdc \geq 1 \).

NE_ENUM_INT_2

On entry, \(vect = \langle value \rangle \), \(m = \langle value \rangle \), \(pdq = \langle value \rangle \).
Constraint: if \(vect = \text{Nag_FormQ} \) or \(\text{Nag_FormBoth} \), \(pdq \geq \max(1, m) \);
otherwise \(pdq \geq 1 \).

On entry, \(vect = \langle value \rangle \), \(n = \langle value \rangle \), \(pdpt = \langle value \rangle \).
Constraint: if \(vect = \text{Nag_FormP} \) or \(\text{Nag_FormBoth} \), \(pdpt \geq \max(1, n) \);
otherwise \(pdpt \geq 1 \).

NE_ALLOC_FAIL

Memory allocation failed.

NE_BAD_PARAM

On entry, parameter \(\langle value \rangle \) had an illegal value.
NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the call is correct then please consult NAG for assistance.

7 Accuracy

The computed bidiagonal form B satisfies $QB^TP^T = A + E$, where

$$
\| E \|_2 \leq c(n)\epsilon \| A \|_2,
$$

$c(n)$ is a modestly increasing function of n, and ϵ is the machine precision. The elements of B themselves may be sensitive to small perturbations in A or to rounding errors in the computation, but this does not affect the stability of the singular values and vectors.

The computed matrix Q differs from an exactly orthogonal matrix by a matrix F such that

$$
\| F \|_2 = O(\epsilon).
$$

A similar statement holds for the computed matrix P^T.

8 Further Comments

The total number of real floating-point operations is approximately the sum of:

- $6n^2k$, if vect = Nag_DoNotForm and ncc = 0, and
- $3n^2n_C(k-1)/k$, if C is updated, and
- $3n^3(k-1)/k$, if either Q or P^T is generated (double this if both),

where $k = k_l + k_u$, assuming $n \gg k$. For this section we assumed that $m = n$.

The complex analogue of this function is nag_zgbbrd (f08lsc).

9 Example

To reduce the matrix A to upper bidiagonal form, where

$$
A = \begin{pmatrix}
-0.57 & -1.28 & 0.00 & 0.00 \\
-1.93 & 1.08 & -0.31 & 0.00 \\
 2.30 & 0.24 & 0.40 & -0.35 \\
 0.00 & 0.64 & -0.66 & 0.08 \\
 0.00 & 0.00 & 0.15 & -2.13 \\
-0.00 & 0.00 & 0.00 & 0.50
\end{pmatrix}
$$

9.1 Program Text

/* nag_dgbbrd (f08lec) Example Program. *
 * Copyright 2001 Numerical Algorithms Group.
 */
#include <stdio.h>
#include <nag.h>
#include <nagf08.h>
int main(void)
{
 /* Scalars */
 Integer i, j, kl, ku, m, n, ncc, pdab, pdc, pdq, pdpt;
 Integer d_len, e_len;
 Integer exit_status=0;

 [NP3645/7] f08lec.5
NagError fail;
Nag_OrderType order;
/* Arrays */
double *ab=0, *c=0, *d=0, *e=0, *pt=0, *q=0;

#ifdef NAG_COLUMN_MAJOR
#define AB(I,J) ab[(J-1)*pdab + ku + I - J]
#else
#define AB(I,J) ab[(I-1)*pdab + kl + J - I]
#endif
order = Nag_ColMajor;
#endif
INIT_FAIL(fail);
Vprintf("f08lec Example Program Results\n");
/* Skip heading in data file */
Vscanf("%*[^
] ");
Vscanf("%ld%ld%ld%ld%ld%*[^
] ", &m, &n, &kl, &ku, &ncc);
#ifdef NAG_COLUMN_MAJOR
pdab = kl + ku + 1;
pdq = m;
pdpt = n;
pdc = m;
#else
pdab = kl + ku + 1;
pdq = m;
pdpt = n;
pdc = MAX(1,ncc);
#endif
d_len = MIN(m,n);
e_len = MIN(m,n)-1;

#endif
NAG C Library Manual
f08lec
f08lec.6 [NP3645/7]

/* Allocate memory */
if (! (ab = NAG_ALLOC((kl+ku+1) * m, double)) ||
 ! (c = NAG_ALLOC(m * MAX(1,ncc), double)) ||
 ! (d = NAG_ALLOC(d_len, double)) ||
 ! (e = NAG_ALLOC(e_len, double)) ||
 ! (pt = NAG_ALLOC(n * n, double)) ||
 ! (q = NAG_ALLOC(m * m, double)))
{
 Vprintf("Allocation failure\n");
 exit_status = -1;
 goto END;
}

#endif
NAG C Library Manual
f08lec
f08lec.6 [NP3645/7]
for (i = 1; i <= MIN(m,n) - 1; ++i)
 Vprintf("%9.4f\n", e[i-1], i%8==0 ?"\n" : " ");
Vprintf("\n");

END:
 if (ab) NAG_FREE(ab);
 if (c) NAG_FREE(c);
 if (d) NAG_FREE(d);
 if (e) NAG_FREE(e);
 if (pt) NAG_FREE(pt);
 if (q) NAG_FREE(q);
 return exit_status;
}

9.2 Program Data

f08lec Example Program Data
6 4 2 1 0 :Values of M, N, KL, KU and NCC
-0.57 -1.28
-1.93 1.08 -0.31
2.30 0.24 0.40 -0.35
0.64 -0.66 0.08
0.15 -2.13
0.50 :End of matrix A

9.3 Program Results

f08lec Example Program Results

Diagonal
3.0561 1.5259 0.9690 1.5685

Super-diagonal
0.6206 -1.2353 -1.1240