NAG C Library Function Document

nag_zunmbr (f08kuc)

1 Purpose

nag_zunmbr (f08kuc) multiplies an arbitrary complex matrix C by one of the complex unitary matrices Q or P which were determined by nag_zgebrd (f08ksc) when reducing a complex matrix to bidiagonal form.

2 Specification

```c
void nag_zunmbr (Nag_OrderType order, Nag_VectType vect, Nag_SideType side,
                 Nag_TransType trans, Integer m, Integer n, Integer k,
                 const Complex a[],
                 Integer pda, const Complex tau[], Complex c[],
                 Integer pdc, NagError *fail)
```

3 Description

nag_zunmbr (f08kuc) is intended to be used after a call to nag_zgebrd (f08ksc), which reduces a complex rectangular matrix A to real bidiagonal form B by a unitary transformation: $A = QBPH$. nag_zgebrd (f08ksc) represents the matrices Q and P^H as products of elementary reflectors.

This function may be used to form one of the matrix products

$$QC, \quad Q^HC, \quad CQ, \quad CQ^H, \quad PC, \quad P^HC, \quad CP \text{ or } CP^H,$$

overwriting the result on C (which may be any complex rectangular matrix).

4 References

5 Parameters

Note: in the descriptions below, r denotes the order of Q or P^H: if side = Nag_LeftSide, $r = m$ and if side = Nag_RightSide, $r = n$.

1: `order` – Nag_OrderType

On entry: the order parameter specifies the two-dimensional storage scheme being used, i.e., row-major ordering or column-major ordering. C language defined storage is specified by order = Nag_RowMajor. See Section 2.2.1.4 of the Essential Introduction for a more detailed explanation of the use of this parameter.

Constraint: order = Nag_RowMajor or Nag_ColMajor.

2: `vect` – Nag_VectType

On entry: indicates whether Q or Q^H or P or P^H is to be applied to C as follows:

- if vect = Nag_ApplyQ, Q or Q^H is applied to C;
- if vect = Nag_ApplyP, P or P^H is applied to C.

Constraint: vect = Nag_ApplyQ or Nag_ApplyP.

3: `side` – Nag_SideType

On entry: indicates how Q or Q^H or P or P^H is to be applied to C as follows:
if side = Nag_LeftSide, Q or Q^H or P or P^H is applied to C from the left;
if side = Nag_RightSide, Q or Q^H or P or P^H is applied to C from the right.

Constraint: side = Nag_LeftSide or Nag_RightSide.

4: trans – Nag_TransType

On entry: indicates whether Q or P or Q^H or P^H is to be applied to C as follows:
 if trans = Nag_NoTrans, Q or P is applied to C;
 if trans = Nag_ConjTrans, Q^H or P^H is applied to C.

Constraint: trans = Nag_NoTrans or Nag_ConjTrans.

5: m – Integer

On entry: m_C, the number of rows of the matrix C.

Constraint: m \geq 0.

6: n – Integer

On entry: n_C, the number of columns of the matrix C.

Constraint: n \geq 0.

7: k – Integer

On entry: if vect = Nag_ApplyQ, the number of columns in the original matrix A; if vect = Nag_ApplyP, the number of rows in the original matrix A.

Constraint: k \geq 0.

8: a[dim] – Complex

Note: the dimension, dim, of the array a must be at least
 \max(1, pda \times \max(1, \min(r, k))) when vect = Nag_ApplyQ and order = Nag_ColMajor;
 \max(1, pda \times r) when vect = Nag_ApplyQ and order = Nag_RowMajor;
 \max(1, pda \times r) when vect = Nag_ApplyP and order = Nag_ColMajor;
 \max(1, pda \times \min(r, k)) when vect = Nag_ApplyP and order = Nag_RowMajor.

On entry: details of the vectors which define the elementary reflectors, as returned by nag_zgebrd (f08ksc).

On exit: used as internal workspace prior to being restored and hence is unchanged.

9: pda – Integer

On entry: the stride separating matrix row or column elements (depending on the value of order) in the array a.

Constraints:
 if order = Nag_ColMajor,
 if vect = Nag_ApplyQ, pda \geq \max(1, r);
 if vect = Nag_ApplyP, pda \geq \max(1, \min(r, k));
 if order = Nag_RowMajor,
 if vect = Nag_ApplyQ, pda \geq \max(1, \min(r, k));
 if vect = Nag_ApplyP, pda \geq \max(1, r).

10: tau[dim] – const Complex

Note: the dimension, dim, of the array tau must be at least \max(1, \min(r, k)).
On entry: further details of the elementary reflectors, as returned by nag_zgebrd (f08ksc) in its parameter tauq if vect = Nag_ApplyQ, or in its parameter taup if vect = Nag_ApplyP.

11: $c[dim]$ – Complex
 Input/Output

 Note: the dimension, dim, of the array c must be at least max(1, pdc \times n) when order = Nag_ColMajor and at least max(1, pdc \times m) when order = Nag_RowMajor.

 If order = Nag_ColMajor, the (i,j)th element of the matrix C is stored in $c[(j - 1) \times$ pdc $+ i - 1]$ and if order = Nag_RowMajor, the (i,j)th element of the matrix C is stored in $c[(i - 1) \times$ pdc $+ j - 1]$.

On entry: the matrix C.

On exit: C is overwritten by Q_C or $Q^H C$ or $C Q$ or $C Q^H$ or P_C or $P^H C$ or $C P$ or $C P^H$ as specified by vect, side and trans.

12: pdc – Integer
 Input

 On entry: the stride separating matrix row or column elements (depending on the value of order) in the array c.

 Constraints:

 if order = Nag_ColMajor, pdc \geq max(1, m);
 if order = Nag_RowMajor, pdc \geq max(1, n).

13: fail – NagError *
 Output

 The NAG error parameter (see the Essential Introduction).

6 Error Indicators and Warnings

NE_INT

On entry, m = value.
Constraint: m \geq 0.

On entry, n = value.
Constraint: n \geq 0.

On entry, k = value.
Constraint: k \geq 0.

On entry, pda = value.
Constraint: pda > 0.

On entry, pdc = value.
Constraint: pdc > 0.

NE_INT_2

On entry, pdc = value, m = value.
Constraint: pdc \geq max(1, m).

On entry, pdc = value, n = value.
Constraint: pdc \geq max(1, n).

NE_ENUM_INT_2

On entry, vect = value, k = value, pda = value.
Constraint: if vect = Nag_ApplyQ, pda \geq max(1, r);
if vect = Nag_ApplyP, pda \geq max(1, min(r, k)).

On entry, vect = value, k = value, pda = value.
Constraint: if vect = Nag_ApplyQ, pda \geq max(1, min(r, k));
if vect = Nag_ApplyP, pda \geq max(1, r).
NE_ALLOC_FAIL

Memory allocation failed.

NE_BAD_PARAM

On entry, parameter (value) had an illegal value.

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the call is correct then please consult NAG for assistance.

7 Accuracy

The computed result differs from the exact result by a matrix E such that

$$
\|E\|_2 = O(\epsilon)\|C\|_2,
$$

where ϵ is the machine precision.

8 Further Comments

The total number of real floating-point operations is approximately

$$
8n_c k(2m_c - k), \quad \text{if side = Nag_LeftSide and } m_c \geq k;
$$

$$
8m_c k(2n_c - k), \quad \text{if side = Nag_RightSide and } n_c \geq k;
$$

$$
8m_c^2 n_c, \quad \text{if side = Nag_LeftSide and } m_c < k;
$$

$$
8n_c^2 m_c, \quad \text{if side = Nag_RightSide and } n_c < k;
$$

where k is the value of the parameter k.

The real analogue of this function is nag_dormbr (f08kgc).

9 Example

For this function two examples are presented. Both illustrate how the reduction to bidiagonal form of a matrix A may be preceded by a QR or LQ factorization of A.

In the first example, $m > n$, and

$$
A = \begin{pmatrix}
0.96 - 0.81i & -0.03 + 0.96i & -0.91 + 2.06i & -0.05 + 0.41i \\
-0.98 + 1.98i & -1.20 + 0.19i & -0.66 + 0.42i & -0.81 + 0.56i \\
0.62 - 0.46i & 1.01 + 0.02i & 0.63 - 0.17i & -1.11 + 0.60i \\
-0.37 + 0.38i & 0.19 - 0.54i & -0.98 - 0.36i & 0.22 - 0.20i \\
0.83 + 0.51i & 0.20 + 0.01i & -0.17 - 0.46i & 1.47 + 1.59i \\
1.08 - 0.28i & 0.20 - 0.12i & -0.07 + 1.23i & 0.26 + 0.26i
\end{pmatrix}.
$$

The function first performs a QR factorization of A as $A = Q_a R$ and then reduces the factor R to bidiagonal form $B: R = Q_b B^H$. Finally it forms Q_a and calls nag_zunmbr (f08kuc) to form $Q = Q_a Q_b$.

In the second example, $m < n$, and

$$
A = \begin{pmatrix}
0.28 - 0.36i & 0.50 - 0.86i & -0.77 - 0.48i & 1.58 + 0.66i \\
-0.50 - 1.10i & -1.21 + 0.76i & -0.32 - 0.24i & -0.27 - 1.15i \\
0.36 - 0.51i & -0.07 + 1.33i & -0.75 + 0.47i & -0.08 + 1.01i
\end{pmatrix}.
$$

The function first performs an LQ factorization of A as $A = L P^H_a$ and then reduces the factor L to bidiagonal form $B: L = Q B P^H_b$. Finally it forms P^H_b and calls nag_zunmbr (f08kuc) to form $P^H = P^H_b P^H_a$.
#include <stdio.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <naga02.h>
#include <nagf08.h>
#include <nagx04.h>

int main(void)
{
 /* Scalars */
 Integer i, ic, j, m, n, pda, pdph, pdu;
 Integer d_len, e_len, tau_len, tauq_len, taup_len;
 Integer exit_status = 0;
 NagError fail;
 Nag_OrderType order;
 /* Arrays */
 Complex *a = 0, *ph = 0, *tau = 0, *taup = 0, *tauq = 0, *u = 0;
 double *d = 0, *e = 0;

 INIT_FAIL(fail);
 Vprintf("f08kuc Example Program Results\n");
 /* Skip heading in data file */
 Vscanf("%*[^n\n] ");
 for (ic = 1; ic <= 2; ++ic)
 {
 Vscanf("%ld%ld%*[^n\n] ", &m, &n);
 #ifdef NAG_COLUMN_MAJOR
 pda = m;
 pdph = n;
 pdu = m;
 #else
 pda = n;
 pdph = n;
 pdu = m;
 #endif
 tau_len = n;
 taup_len = n;
 tauq_len = n;
 d_len = n;
 e_len = n - 1;

 /* Allocate memory */
 if (!(a = NAG_ALLOC(m * n, Complex)) ||
 !(ph = NAG_ALLOC(n * n, Complex)) ||
 !(tau = NAG_ALLOC(tau_len, Complex)) ||
 !(taup = NAG_ALLOC(taup_len, Complex)) ||
 !(tauq = NAG_ALLOC(tauq_len, Complex)) ||
 !(u = NAG_ALLOC(m * m, Complex)) ||
){...}
 }

#define NAG_ALLOC(len, type) \n{ \n type* p = NULL; \n if (len <= sizeof(type)) \n return NULL; \n \n \n p = (type*) malloc(len); \n if (p == NULL) \n exit(-1); \n
 return p; \n}

\n\n
#include <stdio.h>

int main(int argc, char *argv[]) {

 double A[10][10];
 double U[10][10];
 double PH[10][10];

 // Read A from data file
 for (int i = 1; i <= 10; ++i)
 for (int j = 1; j <= 10; ++j)
 scanf(" %lf , %lf ", &A[i][j].re, &A[i][j].im);

 // Compute the QR factorization of A
 f08asc(order, m, n, a, pda, tau, &fail);
 if (fail.code != NE_NOERROR)
 \n // Copy A to U
 for (int i = 1; i <= 10; ++i)
 \n // Form Q explicitly, storing the result in U
 f08atc(order, m, n, n, u, pdu, tau, &fail);
 if (fail.code != NE_NOERROR)
 \n // Copy R to PH (used as workspace)
 for (int i = 1; i <= 10; ++i)
 \n // Set the strictly lower triangular part of R to zero
 for (int i = 2; i <= 10; ++i)
 \n // Bidiagonalize R
 f08ksc(order, n, n, ph, pdph, d, e, tauq, taup, &fail);
 if (fail.code != NE_NOERROR)
 \n // Update Q, storing the result in U
 f08kuc(order, order, Nag_FormQ, Nag_RightSide, Nag_NoTrans, m, n, n, ph, pdph, tauq, u, pdu, &fail);

 return 0;
}

f08kuc
NAG C Library Manual
f08kuc.6 [NP3645/7]
if (fail.code != NE_NOERROR) {
 Vprintf("Error from f08kuc.\n\n", fail.message);
 exit_status = 1;
 goto END;
}
/* Print bidiagonal form and matrix Q */
Vprintf("Example 1: bidiagonal matrix B\nDiagonal\n");
for (i = 1; i <= n; ++i)
 Vprintf("%8.4f%s", d[i-1], i%8==0 ?"\n":" ");
Vprintf("\nSuper-diagonal\n");
for (i = 1; i <= n - 1; ++i)
 Vprintf("%8.4f%s", e[i-1], i%8 == 0 ?"\n":" ");
Vprintf("\n\n");
x04dbc(order, Nag_GeneralMatrix, Nag_NonUnitDiag,
m, n, u, pdu, Nag_BracketForm, "%7.4f",
"Example 1: matrix Q", Nag_IntegerLabels,
0, Nag_IntegerLabels, 0, 80, 0, 0, &fail);
if (fail.code != NE_NOERROR) {
 Vprintf("Error from x04dbc.\n\n", fail.message);
 exit_status = 1;
 goto END;
}
} else {
 /* Compute the LQ factorization of A */
 f08avc(order, m, n, a, pda, tau, &fail);
 if (fail.code != NE_NOERROR) {
 Vprintf("Error from f08avc.\n\n", fail.message);
 exit_status = 1;
 goto END;
 }
 /* Copy A to PH */
 for (i = 1; i <= m; ++i) {
 for (j = 1; j <= n; ++j) {
 PH(i,j).re = A(i,j).re;
 PH(i,j).im = A(i,j).im;
 }
 }
 /* Form Q explicitly, storing the result in PH */
 f08awc(order, m, n, m, ph, pdph, tau, &fail);
 if (fail.code != NE_NOERROR) {
 Vprintf("Error from f08awc.\n\n", fail.message);
 exit_status = 1;
 goto END;
 }
 /* Copy L to U (used as workspace) */
 for (i = 1; i <= m; ++i) {
 for (j = 1; j <= i; ++j) {
 U(i,j).re = A(i,j).re;
 U(i,j).im = A(i,j).im;
 }
 }
 /* Set the strictly upper triangular part of L to zero */
 for (i = 1; i <= m-1; ++i) {
 for (j = i+1; j <= m; ++j) {
 U(i,j).re = 0.0;
 U(i,j).im = 0.0;
 }
 }
 /* Bidiagonalize L */

if (fail.code != NE_NOERROR) {
 Vprintf("Error from f08kuc.\n\n", fail.message);
 exit_status = 1;
 goto END;
}
f08ksc(order, m, m, u, pdu, d, e, tauq, taup, &fail);
if (fail.code != NE_NOERROR)
{
 Vprintf("Error from f08ksc.\n%s\n", fail.message);
 exit_status = 1;
 goto END;
}

/* Update P**H, storing the result in PH */
f08kuc(order, Nag_FormP, Nag_LeftSide, Nag_ConjTrans,
 m, n, m, u, pdu, taup, ph, pdph, &fail);
if (fail.code != NE_NOERROR)
{
 Vprintf("Error from f08kuc.\n%s\n", fail.message);
 exit_status = 1;
 goto END;
}

/* Print bidiagonal form and matrix P**H */
Vprintf("\nExample 2: bidiagonal matrix B\n%s\n", "Diagonal");
for (i = 1; i <= m; ++i)
 Vprintf("%8.4f%s", d[i-1], i%8==0 ?"\n":" ");
Vprintf("\nSuper-diagonal\n");
for (i = 1; i <= m - 1; ++i)
 Vprintf("%8.4f%s", e[i-1], i%8==0 ?"\n":" ");
Vprintf("\n\n");
x04dbc(order, Nag_GeneralMatrix, Nag_NonUnitDiag,
 m, n, ph, pdph, Nag_BracketForm, "%7.4f",
 "Example 2: matrix P**H", Nag_IntegerLabels,
 0, Nag_IntegerLabels, 0, 80, 0, 0, &fail);
if (fail.code != NE_NOERROR)
{
 Vprintf("Error from x04dbc.\n%s\n", fail.message);
 exit_status = 1;
 goto END;
}

END:
if (a) NAG_FREE(a);
if (ph) NAG_FREE(ph);
if (tau) NAG_FREE(tau);
if (taup) NAG_FREE(taup);
if (tauq) NAG_FREE(tauq);
if (u) NAG_FREE(u);
if (d) NAG_FREE(d);
if (e) NAG_FREE(e);
}

return exit_status;

9.2 Program Data
f08kuc Example Program Data
f08kuc 6 4 :Values of M and N, Example 1
(0.96, -0.81) (-0.03, 0.96) (-0.91, 2.06) (-0.05, 0.41)
(-0.98, 1.98) (-1.20, 0.19) (-0.66, 0.42) (-0.81, 0.56)
(-0.62, -0.46) (-1.01, 0.02) (-0.63, -0.17) (-1.11, 0.60)
(-0.37, 0.38) (-0.19, -0.54) (-0.98, -0.36) (0.22, -0.20)
(0.83, 0.51) (0.20, 0.01) (-0.17, -0.46) (1.47, 1.59)
(1.08, -0.28) (0.20, -0.12) (-0.07, 1.23) (0.26, 0.26) :End of matrix A

3 4 :Values of M and N, Example 2
(0.28, -0.36) (0.50, -0.86) (-0.77, -0.48) (1.58, 0.66)
(-0.50, -1.10) (-1.21, 0.76) (-0.32, -0.24) (-0.27, -1.15)
(0.36, -0.51) (-0.07, 1.33) (-0.75, 0.47) (-0.08, 1.01) :End of matrix A
9.3 Program Results

f08kuc Example Program Results

Example 1: bidiagonal matrix B
Diagonal
-3.0870 -2.0660 -1.8731 -2.0022
Super-diagonal
2.1126 -1.2628 1.6126

Example 1: matrix Q

1 2 3 4
1 (-0.3110, 0.2624) (0.6521, 0.5532) (0.0427, 0.0361) (-0.2634, -0.0741)
2 (0.3175, -0.6414) (0.3488, 0.0721) (0.2287, 0.0069) (0.1101, -0.0326)
3 (-0.2008, 0.1490) (-0.3103, 0.0230) (0.1855, -0.1817) (-0.2956, 0.5648)
4 (0.1199, -0.1231) (-0.0046, -0.0005) (-0.3305, 0.4821) (-0.0675, 0.3464)
5 (-0.2689, -0.1652) (0.1794, -0.0586) (-0.5235, -0.2580) (0.3927, 0.1450)
6 (-0.3499, 0.0907) (0.0829, -0.0506) (0.3202, 0.3038) (0.3174, 0.3241)

Example 2: bidiagonal matrix B
Diagonal
2.7615 1.6298 -1.3275
Super-diagonal
-0.9500 -1.0183

Example 2: matrix P**H

1 2 3 4
1 (-0.1258, 0.1618) (-0.2247, 0.3864) (0.3460, 0.2157) (-0.7099, -0.2966)
2 (0.4148, 0.1795) (0.1368, -0.3976) (0.6885, 0.3386) (0.1667, -0.0494)
3 (0.4575, -0.4807) (-0.2733, 0.4981) (-0.0230, 0.3861) (0.1730, 0.2395)