NAG C Library Function Document

nag_zgebrd (f08ksc)

1 Purpose

nag_zgebrd (f08ksc) reduces a complex m by n matrix to bidiagonal form.

2 Specification

```c
void nag_zgebrd (Nag_OrderType order, Integer m, Integer n, Complex a[],
                Integer pda, double d[], double e[], Complex tauq[], Complex taup[],
                NagError *fail)
```

3 Description

nag_zgebrd (f08ksc) reduces a complex m by n matrix A to real bidiagonal form B by a unitary transformation: $A = QBP^H$, where Q and P^H are unitary matrices of order m and n respectively.

If $m \geq n$, the reduction is given by:

$$ A = Q \begin{pmatrix} B_1 & 0 \end{pmatrix} P^H = Q_1 B_1 P_1^H, $$

where B_1 is a real n by n upper bidiagonal matrix and Q_1 consists of the first n columns of Q.

If $m < n$, the reduction is given by

$$ A = Q \begin{pmatrix} B_1 & 0 \end{pmatrix} P_1^H = QB_1 P_1^H, $$

where B_1 is a real m by m lower bidiagonal matrix and P_1^H consists of the first m rows of P^H.

The unitary matrices Q and P are not formed explicitly but are represented as products of elementary reflectors (see the f08 Chapter Introduction for details). Functions are provided to work with Q and P in this representation (see Section 8).

4 References

5 Parameters

1: order -- Nag_OrderType

- **Input**
- **On entry**: the order parameter specifies the two-dimensional storage scheme being used, i.e., row-major ordering or column-major ordering. C language defined storage is specified by order = Nag_RowMajor. See Section 2.2.1.4 of the Essential Introduction for a more detailed explanation of the use of this parameter.

- **Constraint**: order = Nag_RowMajor or Nag_ColMajor.

2: m -- Integer

- **Input**
- **On entry**: m, the number of rows of the matrix A.

- **Constraint**: $m \geq 0$.
3: n – Integer
 Input
 On entry: n, the number of columns of the matrix A.
 Constraint: n ≥ 0.

4: a[dim] – Complex
 Input/Output
 Note: the dimension, dim, of the array a must be at least \text{max}(1,pda \times n) when
 order = Nag.ColMajor and at least \text{max}(1,pda \times m) when order = Nag.RowMajor.
 If order = Nag.ColMajor, the (i,j)th element of the matrix A is stored in
a[(j-1) \times pda + i - 1] and
if order = Nag.RowMajor, the (i,j)th element of the matrix A is stored in
a[(i-1) \times pda + j - 1].
 On entry: the m by n matrix A.
 On exit: if m ≥ n, the diagonal and first super-diagonal are overwritten by the upper bidiagonal
 matrix B, elements below the diagonal are overwritten by details of the unitary matrix Q and
elements above the first super-diagonal are overwritten by details of the unitary matrix P.
 If m < n, the diagonal and first sub-diagonal are overwritten by the lower bidiagonal matrix B,
elements below the first sub-diagonal are overwritten by details of the unitary matrix Q and
elements above the diagonal are overwritten by details of the unitary matrix P.

5: pda – Integer
 Input
 On entry: the stride separating matrix row or column elements (depending on the value of order) in
 the array a.
 Constraints:
 if order = Nag.ColMajor, pda ≥ \text{max}(1,m);
 if order = Nag.RowMajor, pda ≥ \text{max}(1,n).

6: d[dim] – double
 Output
 Note: the dimension, dim, of the array d must be at least \text{max}(1,\text{min}(m,n)).
 On exit: the diagonal elements of the bidiagonal matrix B.

7: e[dim] – double
 Output
 Note: the dimension, dim, of the array e must be at least \text{max}(1,\text{min}(m,n) - 1).
 On exit: the off-diagonal elements of the bidiagonal matrix B.

8: tauq[dim] – Complex
 Output
 Note: the dimension, dim, of the array tauq must be at least \text{max}(1,\text{min}(m,n)).
 On exit: further details of the unitary matrix Q.

9: taup[dim] – Complex
 Output
 Note: the dimension, dim, of the array taup must be at least \text{max}(1,\text{min}(m,n)).
 On exit: further details of the unitary matrix P.

10: fail – NagError *
 Output
 The NAG error parameter (see the Essential Introduction).

6 Error Indicators and Warnings

NE_INT
 On entry, m = (value).
 Constraint: m ≥ 0.
On entry, $n = \langle\text{value}\rangle$.
Constraint: $n \geq 0$.

On entry, $pda = \langle\text{value}\rangle$.
Constraint: $pda > 0$.

NE_INT_2

On entry, $pda = \langle\text{value}\rangle$, $m = \langle\text{value}\rangle$.
Constraint: $pda \geq \max(1,m)$.

On entry, $pda = \langle\text{value}\rangle$, $n = \langle\text{value}\rangle$.
Constraint: $pda \geq \max(1,n)$.

NE_ALLOC_FAIL

Memory allocation failed.

NE_BAD_PARAM

On entry, parameter $\langle\text{value}\rangle$ had an illegal value.

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the call is correct then please consult NAG for assistance.

7 Accuracy

The computed bidiagonal form B satisfies $QBP^H = A + E$, where

$$
\|E\|_2 \leq c(n)\epsilon\|A\|_2,
$$

$c(n)$ is a modestly increasing function of n, and ϵ is the *machine precision*.

The elements of B themselves may be sensitive to small perturbations in A or to rounding errors in the computation, but this does not affect the stability of the singular values and vectors.

8 Further Comments

The total number of real floating-point operations is approximately $16n^2(3m-n)/3$ if $m \geq n$ or $16m^2(3n-m)/3$ if $m < n$.

If $m \gg n$, it can be more efficient to first call nag_zgeqrf (f08asc) to perform a QR factorization of A, and then to call nag_zgebrd (f08ksc) to reduce the factor R to bidiagonal form. This requires approximately $8n^2(m+n)$ floating-point operations.

If $m \ll n$, it can be more efficient to first call nag_zgelqf (f08avc) to perform an LQ factorization of A, and then to call nag_zgebrd (f08ksc) to reduce the factor L to bidiagonal form. This requires approximately $8m^2(m+n)$ operations.

To form the unitary matrices P^H and/or Q, this function may be followed by calls to nag_zungbr (f08ktc):

- to form the m by m unitary matrix Q

  ```fortran
  nag_zungbr (order,Nag_FormQ,m,m,&a,pda,tauq,&fail)
  ```

 but note that the second dimension of the array a must be at least m, which may be larger than was required by nag_zgebrd (f08ksc);

- to form the n by n unitary matrix P^H

  ```fortran
  nag_zungbr (order,Nag_FormP,n,n,&a,pda,taup,&fail)
  ```

 but note that the first dimension of the array a, specified by the parameter pda, must be at least n, which may be larger than was required by nag_zgebrd (f08ksc).
To apply Q or P to a complex rectangular matrix C, this function may be followed by a call to nag_zunmbr (f08kuc).

The real analogue of this function is nag_zgebrd (f08ksc).

9 Example

To reduce the matrix A to bidiagonal form, where

$$
A = \begin{pmatrix}
0.96 - 0.81i & -0.03 + 0.96i & -0.91 + 2.06i & -0.05 + 0.41i \\
-0.98 + 1.98i & -1.20 + 0.19i & -0.66 + 0.42i & -0.81 + 0.56i \\
0.62 - 0.46i & 1.01 + 0.02i & 0.63 - 0.17i & -1.11 + 0.60i \\
-0.37 + 0.38i & 0.19 - 0.54i & -0.98 - 0.36i & 0.22 - 0.20i \\
0.83 + 0.51i & 0.20 + 0.01i & -0.17 - 0.46i & 1.47 + 1.59i \\
1.08 - 0.28i & 0.20 - 0.12i & -0.07 + 1.23i & 0.26 + 0.26i
\end{pmatrix}
$$

9.1 Program Text

/* nag_zgebrd (f08ksc) Example Program.
* * Copyright 2001 Numerical Algorithms Group.
* * Mark 7, 2001. */

#include <stdio.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagf08.h>

int main(void)
{
 /* Scalars */
 Integer i, j, m, n, pda, d_len, e_len, tauq_len, taup_len;
 Integer exit_status=0;
 NagError fail;
 Nag_OrderType order;
 /* Arrays */
 Complex *a=0, *taup=0, *tauq=0;
 double *d=0, *e=0;

#ifdef NAG_COLUMN_MAJOR
#define A(I,J) a[(J-1)*pda+I-1]
#else
#define A(I,J) a[(I-1)*pda+J-1]
#endif
 INIT_FAIL(fail);
 Vprintf("f08ksc Example Program Results\n");
 /* Skip heading in data file */
 Vscanf("%*[\n]");
 Vscanf("%ld%ld%*[\n]", &m, &n);
#ifdef NAG_COLUMN_MAJOR
 pda = m;
#else
 pda = n;
#endif
 d_len = MIN(m,n);
 e_len = MIN(m,n)-1;
 tauq_len = MIN(m,n);
 taup_len = MIN(m,n);

#ifdef NAG_COLUMN_MAJOR
if (!(a = NAG_ALLOC(m * n, Complex)) ||
 !(d = NAG_ALLOC(d_len, double)) ||
 }
!((e = NAG_ALLOC(e_len, double)) ||
!(taup = NAG_ALLOC(taup_len, Complex)) ||
!(tauq = NAG_ALLOC(tauq_len, Complex)))
{
 Vprintf("Allocation failure\n");
 exit_status = -1;
 goto END;
}
/* Read A from data file */
for (i = 1; i <= m; ++i)
{
 for (j = 1; j <= n; ++j)
 Vscanf(" (%lf , %lf)", &A(i,j).re, &A(i,j).im);
}
Vscanf("%*[^
\n] ");
/* Reduce A to bidiagonal form */
f08ksc(order, m, n, a, pda, d, e, tauq, taup, &fail);
if (fail.code != NE_NOERROR)
{
 Vprintf("Error from f08ksc.\n%s\n", fail.message);
 exit_status = 1;
 goto END;
}
/* Print bidiagonal form */
Vprintf("\nDiagonal\n");
for (i = 1; i <= MIN(m,n); ++i)
 Vprintf("%9.4f%s", d[i-1], i%8==0 ?"\n":" ");
else
 Vprintf("\nSuper-diagonal\n");
for (i = 1; i <= MIN(m,n) - 1; ++i)
 Vprintf("%9.4f%s", e[i-1], i%8==0 ?"\n":" ");
Vprintf("\n");
END:
if (a) NAG_FREE(a);
if (d) NAG_FREE(d);
if (e) NAG_FREE(e);
if (taup) NAG_FREE(taup);
if (tauq) NAG_FREE(tauq);
return exit_status;
}

9.2 Program Data
f08ksc Example Program Data

6 4 :Values of M and N
(0.96, -0.81) (-0.03, 0.96) (-0.91, 2.06) (-0.05, 0.41)
(-0.98, 1.98) (-1.20, 0.19) (-0.66, 0.42) (-0.81, 0.56)
(0.62, -0.46) (1.01, 0.02) (0.63, -0.17) (-1.11, 0.60)
(-0.37, 0.38) (0.19, -0.54) (-0.98, -0.36) (0.22, -0.20)
(0.83, 0.51) (0.20, 0.01) (-0.17, -0.46) (1.47, 1.59)
(1.08, -0.28) (0.20, -0.12) (-0.07, 1.23) (0.26, 0.26) :End of matrix A

9.3 Program Results
f08ksc Example Program Results

Diagonal
-3.0870 2.0660 1.8731 2.0022
Super-diagonal
 2.1126 1.2628 -1.6126